Câu hỏi:

17/06/2025 16

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh bằng \(2a\). Biết \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) \(SA = a\sqrt 2 \). Số đo góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAB} \right)\)    

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

v (ảnh 1)

Ta kẻ \(CH \bot AB,\,H \in \,AB\).

\( \Rightarrow \left\{ \begin{array}{l}CH \bot AB\\CH \bot SA\end{array} \right. \Rightarrow CH \bot \left( {SAB} \right)\).

Vậy \(SH\) là hình chiếu vuông góc của đoạn thẳng \(SC\) trên mặt phẳng \(\left( {SAB} \right)\).

Khi đó \(\left( {SC,\left( {SAB} \right)} \right) = \left( {SC,\,SH} \right) = \widehat {CSH}\).

Ta có \[CH = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \], \(SH = \sqrt {S{A^2} + A{H^2}}  = \sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {a^2}}  = a\sqrt 3 \).    

Xét tam giác \(SHC\) vuông tại \(H\) ta có: \(\tan \widehat {CSH} = \frac{{CH}}{{SH}} = \frac{{a\sqrt 3 }}{{a\sqrt 3 }} = 1 \Rightarrow \widehat {CSH} = 45^\circ \).

Vậy \(\left( {SC,\,\left( {SAB} \right)} \right) = 45^\circ \). Chọn B.  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

v (ảnh 1)

Ta có \(AA' = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 2 \).

Diện tích tam giác \(ABC\)  là: \({S_{ABC}} = \frac{1}{2}A{B^2} = \frac{{{a^2}}}{2}\).

Thể tích khối lăng trụ là \(V = AA' \cdot {S_{ABC}} = \frac{{{a^3}\sqrt 2 }}{2}\). Chọn D.

Lời giải

C (ảnh 1)

Ta có \(SI\) vuông góc với đáy \(\left( {ABCD} \right)\) và \(BC = \sqrt {{{\left( {2a} \right)}^2} + {a^2}}  = a\sqrt 5 \).

Vẽ \[IH \bot CB\] tại \[H\].

Do đó, \(IH\) là hình chiếu của \(SH\) lên mặt phẳng \(\left( {ABCD} \right)\) nên \[SH \bot CB\] (theo định lý ba đường vuông góc).

Khi đó, \[\widehat {SHI}\] là góc phẳng nhị diện của góc nhị diện \(\left[ {S,BC,D} \right]\).

Ta có \[{S_{ICB}} = {S_{ABCD}} - {S_{IDC}} - {S_{AIB}}\]\[ = 3{a^2} - \frac{{{a^2}}}{2} - {a^2} = \frac{{3{a^2}}}{2}\]\[ \Rightarrow IH \cdot CB = 3{a^2}\]\[ \Rightarrow IH = \frac{{3a\sqrt 5 }}{5}\].

Ta có \[\tan \widehat {SHI} = \frac{{SI}}{{IH}}\]\[ = \frac{{\frac{{3a\sqrt 5 }}{5}}}{{\frac{{3a\sqrt 5 }}{5}}} = 1\]\[ \Rightarrow \widehat {SHI} = 45^\circ \].

Đáp án: \[45\].

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP