Câu hỏi:

17/05/2020 740

Cho hình chóp S.ABCD có đáy là hình thang vuông tại A B với AB = BC = a,

AD = 2a. Biết SA vuông góc với mặt phằng (ABCD) và SA=a5. Côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C.

Không mất tính tổng quát, giả sử a = 1

Xét hệ trục tọa độ Oxyz với 

A0;0;0;D2;0;0;

B0;1;0;S0;0;5.

Điểm C thỏa mãn 

BC=12AD=1;0;0

C1;1;0. 

mp(SBC) có 

n1=SB;BC=0;1;5;1;0;0

=0;5;1.

mp(SCD) có 

n2=SD;CD=2;0;5;1;1;0=5;5;2.

Do đó côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng:

cosα=n1.n2n1.n2=723=216.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D.

Gọi 4 số đó là: a; a + d; a + 2d; a + 3d.

Theo đề bài: 

4a+6d=322a+3d=16.

Lại có 

a2+a+d2+a+2d2+a+3d2=3364a2+12ad+14d2=336.

2a=163d vào, ta tìm được d = 4 hoặc.

Ở cả 2 trường hợp đều ra 4 số cần tìm là 2; 6; 10; 14. Tích 4 số này là 1680.

 

Lời giải

Đáp án C.

Ta có:

y'=3x2+4x;y'=13x2+4x=1x=1x=13.

Khi x = 1, tiếp tuyến có phương trình y = x + 2 trùng với đường thẳng y = x + 2.

Khi x = , tiếp tuyến có phương trình y=x+5027.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP