Câu hỏi:
13/07/2024 6,019Một số có ba chữ số. Nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 17 và dư 5. Nếu đổi hai chữ số hàng chục và hàng trăm cho nhau thì được số mới mà chia cho tổng các chữ số của nó thì được thương là 30 và dư là 4. Nếu đổi hai chữ số hàng chục và hàng đơn vị của số mới này cho nhau thì được một số mà chia cho tổng các chữ số của nó thì được thương là 34 và dư là 3. Vậy số đã cho ban đầu là:
A. 172 B. 296
C. 124 D. 587
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình
Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.
Do đó ta phải xét các phương án
- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.
- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.
- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.
Đáp án: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một công ti có 85 xe chở khách gồm hai loại, xe chở được 4 khách và xe chở được 7 khách. Dùng tất cả số xe đó, tối đa công ti chở một lần được 445 khách. Hỏi công ti đó có mấy xe mỗi loại?
Câu 2:
Một khách sạn có 102 phòng gồm ba loại: phòng 3 người, phòng 2 người và phòng 1 người. Nếu đầy khách tất cả các phòng thì khách sạn đón được 211 khách. Còn nếu cải tạo lại các phòng bằng cách: sửa các phòng 2 người thành 3 người, còn phòng 3 người sửa lại thành phòng 2 người và giữ nguyện phòng 1 người thì tối đa một lần có thể đón 224 khách.
Vậy số phòng từng loại hiện nay của khách sạn là:
A. 50 phòng 3 người, 41 phòng 2 người, 11 phòng 1 người.
B. 32 phòng 3 người, 45 phòng 2 người, 25 phòng 1 người.
C. 41 phòng 3 người, 51 phòng 2 người, 10 phòng 1 người.
D. 25 phòng 3 người, 59 phòng 2 người, 18 phòng 1 người.
Câu 3:
Một chủ cửa hàng bán lẻ mang 1 500 000 đồng đến ngân hàng đổi tiền để trả lại cho người mua. Ông ta đổi được tất cả 1 450 đồng tiền xu các loại 2000 đồng, 1000 đồng và 500 đồng. Biết rằng số tiền xu loại 1 000 đồng bằng hai lần hiệu của số tiền xu loại 500 đồng với số tiền xu loại 2000 đồng. Hỏi mỗi loại có bao nhiêu đồng tiền xu?
Câu 4:
Một công ti kinh doanh xe buýt có 35 xe gồm hai loại: loại xe chở được 45 khách và loại xe chở được 12 khách. Nếu dùng tất cả số xe đó tối đa công ti chở một lần được 1113 khách. Vậy công ti có số xe mỗi loại là:
A. 20 xe 45 chỗ, 15 xe 12 chỗ.
B. 17 xe 45 chỗ, 18 xe 12 chỗ.
C. 21 xe 45 chỗ, 14 xe 12 chỗ.
D. 19 xe 45 chỗ, 16 xe 12 chỗ.
về câu hỏi!