Câu hỏi:

12/07/2024 1,548 Lưu

Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = a, BC = b, SA = c. Tính khoảng cách từ E đến mặt phẳng (SAB).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi d là khoảng cách từ E đến mặt phẳng (SAB)

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Kết hợp với kết quả trong câu a)

ta suy ra Giải sách bài tập Toán 12 | Giải sbt Toán 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Kẻ SH (ABC) và HA’, HB’ , HC’ lần lượt vuông góc với BC, CA, AB. Theo định lí ba đường vuông góc ta có SA′  BC, SB′  CA, SC′  AB

Từ đó suy ra SA′H = SB′H = SC′H = 60°.

Do đó các tam giác vuông SHA’ , SHB’ , SHC’ bằng nhau. Từ đó suy ra HA’ = HB’ = HC’ . Vậy H là tâm đường tròn nội tiếp tam giác ABC. Do tam giác cân ở A nên AH vừa là đường phân giác , vừa là đường cao, vừa là đường trung tuyến. Từ đó suy ra A, H, A’ thẳng hàng và A’ là trung điểm của BC.

Do đó, AA'2=AB2-BA'2=25a2-9a2=16a2

Vậy AA’ = 4a

Gọi p là nửa chu vi của tam giác ABC, r là bán kính đường tròn nội tiếp của nó.

Khi đó SABC = 6a.4a/2 = 12a2 = pr = 8ar

Từ đó suy ra r = 3a/2

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Thể tích khối chóp M.AB’C bằng thể tích khối chóp B’AMC. Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP