Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
(Các phần giải thích học sinh không phải trình bày).
(Nhân 2 vế pt 1 với 3; nhân pt 2 với 2 để hệ số của y đối nhau)
(hệ số của y đối nhau nên ta cộng từ vế 2 pt)
Vậy hệ phương trình có nghiệm duy nhất
(Nhân hai vế pt 1 với 2 để hệ số của y đối nhau)
( lấy vế cộng vế hai phương trình)
Phương trình 0x = 27 vô nghiệm nên hệ phương trình vô nghiệm.
(Nhân hai vế pt 2 với 3 để hệ số của y bằng nhau)
(Trừ từng vế hai phương trình)
Phương trình 0x = 0 nghiệm đúng với mọi x.
Vậy hệ phương trình có vô số nghiệm dạng (x ∈ R).
Kiến thức áp dụng
Giải hệ phương trình bằng phương pháp cộng đại số
1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.
2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).
3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:
a) A(2; -2) và B(-1; 3) ; b) A(-4; -2) và B(2; 1)
c) A(3; -1) và B(-3; 2) ; d) A(√3; 2) và B(0; 2)
Câu 4:
Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:
Câu 5:
Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:
P(x) = (3m – 5n + 1)x + (4m – n -10)
về câu hỏi!