Câu hỏi:

13/07/2024 1,137

Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:

 a) 1x1y=13x+4y=5 Đặt u=1x;v=1y b) 1x2+1y1=22x23y1=1 đặt u=1x2;v=1y1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

hệ phương trình (*) trở thành :

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

+u=971x=97x=79+v=271y27y72

Vậy hệ phương trình có nghiệm (7/9;7/2)

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 27 trang 20 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

Kiến thức áp dụng

+ Đồ thị hàm số y = f(x) đi qua điểm A(x0; y0) ⇔ y0 = f(x0).

+ Giải hệ phương trình bằng phương pháp cộng đại số

   1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

   2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

   3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

Lời giải

Lấy phương trình (2) trừ phương trình (1), vế trừ vế ta được:

Giải bài 23 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 23 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lưu ý:

Giải bài 23 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP