Câu hỏi:

18/07/2020 2,374 Lưu

Với a, b, c bất kỳ. Hãy so sánh 3(a2 + b2 + c2) và (a + b + c)2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hiệu:

3(a2 + b2 + c2) - (a + b + c)2

= 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ac

= 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac

= (a - b)2 + (b - c)2 + (c - a)2 ≥ 0

(vì (a - b)2 ≥ 0; (b - c)2 ≥ 0; (c - a)2 ≥ 0 với mọi a, b, c

Nên 3(a2 + b2 + c2) ≥ (a + b + c)2.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Vì -3 > -4 “cộng vào hai vế của bất đẳng thức với cùng một số m bất kỳ” ta được m - 3 > m - 4.

Đáp án cần chọn là: A

Lời giải

+ Vì a < b, cộng hai vế của bất đẳng thức với -1 ta được a - 1 < b - 1 => (I) đúng.

+ Vì a - 1 < b - 1 (cmt) mà b - 1 < b nên a - 1 < b => (II) đúng

+ Vì a < b, cộng hai vế của bất đẳng thức với 1 ta được a + 1 < b + 1 mà

a + 1 < a + 2 nên ta chưa đủ dữ kiện để nói rằng a + 2 < b + 1 => (III) sai.

Vậy có 1 khẳng định sai.

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP