Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn B.
Phương pháp
Sử dụng các công thức nguyên hàm cơ bản.
Cách giải:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) có đạo hàm trên R là Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10;20] để hàm số đồng biến trên khoảng (0;2)?
Câu 2:
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
Câu 4:
Cho hàm số (m là tham số). Xác định khoảng cách lớn nhất từ gốc tọa độ O(0;0) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên.
Câu 5:
Tìm số giá trị nguyên thuộc đoạn [-2019;2019] của tham số m để đồ thị hàm số có đúng hai đường tiệm cận.
Câu 6:
Tìm tất cả các giá trị của tham số m để phương trình
có đúng bốn nghiệm phân biệt thuộc đoạn
Câu 7:
Tính tổng T của các giá trị nguyên của tham số m để phương trình có đúng hai nghiệm phân biệt nhỏ hơn
về câu hỏi!