Câu hỏi:

20/02/2021 31,805

Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là điểm H thỏa mãn BI = 3IH. Góc giữa hai mặt phẳng (SAB) và (SBC) là 60 độ. Thể tích của khối chóp S.ABC là:

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Cách 1:

Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB

Từ giả thiết tam giác ABC vuông cân tại B ta được 

Trong tam giác ICK vuông tại I .

Suy ra IK > IB.

Do  nên tam giác BIK vuông tại K

Như vậy IK > IB (vô lý do IB là cạnh huyền).

TH2:  tương tự phần trên ta có 

D nên tam giác BIK vuông tại K và 

 

Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra: 

Vậy thể tích của khối chóp S.ABC là 

 

Miea

Miea

Cho tứ diện SABC có tam giác ABC vuông cân tại B, SA vuông góc ( ABC ), cho SA = a√2 , AB = a. Gọi H , K lần lượt là chân đường vuông góc của A lên các cạnh SB , SC .
1 / Chứng minh :
a ) BC vuông góc ( SAB )
b ) AH vuông góc SC
c ) ( SAB ) vuông góc ( SBC )
d ) SC vuông góc( AHK )
2 / Tính góc giữa hai mặt phẳng :
a ) ( SBC ) và ( ABC )
b ) ( AHK ) và ( SAB )
3 / Tìm khoảng cách từ A đến ( SBC ) , khoảng cách từ B đến ( SAC )
4 / Tìm góc giữa :
a ) SB với ( ABC )
b ) SC với ( ABC )
c ) AH với ( ABC )

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

 

 

Gọi M là trung điểm của BC 

=> AM  BC (1) 

Ta có BC AMBCAA' BC  A'M (2)

Mặt khác ABC A'BC = BC (3)

 

 

 

 

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP