Câu hỏi:
20/02/2021 31,738Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là điểm H thỏa mãn = 3. Góc giữa hai mặt phẳng (SAB) và (SBC) là 60 độ. Thể tích của khối chóp S.ABC là:
Câu hỏi trong đề: 80 câu trắc nghiệm Khối đa diện nâng cao !!
Quảng cáo
Trả lời:
Chọn A
Cách 1:
Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB
Từ giả thiết tam giác ABC vuông cân tại B ta được
Trong tam giác ICK vuông tại I có .
Suy ra IK > IB.
Do nên tam giác BIK vuông tại K
Như vậy IK > IB (vô lý do IB là cạnh huyền).
TH2: tương tự phần trên ta có
Do nên tam giác BIK vuông tại K và
Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra:
Vậy thể tích của khối chóp S.ABC là
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Gọi M là trung điểm của BC
=> AM BC (1)
Ta có
Mặt khác
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Miea
Cho tứ diện SABC có tam giác ABC vuông cân tại B, SA vuông góc ( ABC ), cho SA = a√2 , AB = a. Gọi H , K lần lượt là chân đường vuông góc của A lên các cạnh SB , SC .
1 / Chứng minh :
a ) BC vuông góc ( SAB )
b ) AH vuông góc SC
c ) ( SAB ) vuông góc ( SBC )
d ) SC vuông góc( AHK )
2 / Tính góc giữa hai mặt phẳng :
a ) ( SBC ) và ( ABC )
b ) ( AHK ) và ( SAB )
3 / Tìm khoảng cách từ A đến ( SBC ) , khoảng cách từ B đến ( SAC )
4 / Tìm góc giữa :
a ) SB với ( ABC )
b ) SC với ( ABC )
c ) AH với ( ABC )