Câu hỏi:

24/07/2020 1,031

Cho hình chóp tam giác S.ABC có đáy ABC là một tam giác vuông cân tại B với trọng tâm G, cạnh bên SA tạo với đáy (ABC) một góc 300. Biết hai  mặt phẳng SBG và SCG cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SABC

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

+) Gọi M, N, P, Q lần lượt là trung điểm của AB, SC, BC, AC. Chứng minh SA;BC=NQ;MQ

+) Áp dụng định lí cosin trong tam giác MNQ.

 

Cách giải:

Áp dụng định lý cosin trong tam giác MNQ:

Chú ý: Góc giữa hai đường thẳng là góc nhọn nên cosin của góc giữa hai đường thẳng là giá trị dương.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập nghiệm của bất phương trình logx29log3x1 là:

Xem đáp án » 24/07/2020 20,894

Câu 2:

Cho hàm số fx=74x2   khi   0x14x2     khi   x>1. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số fx và các đường thẳng x=0,x=3,y=0  

Xem đáp án » 24/07/2020 13,528

Câu 3:

Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P) và (Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A1;1;1 và B0;2;2, đồng thời cắt các trục tọa độ Ox, Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x+b1y+c1z+d1=0 và (Q) có phương trình  x+b2y+c2z+d2=0. Tính giá trị của biểu thức b1b2+c1c2

Xem đáp án » 24/07/2020 10,305

Câu 4:

Trong các mệnh đề sau, mệnh đề nào sai

Xem đáp án » 25/07/2020 10,167

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho điểm H1;2;2. Mặt phẳng α đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của ΔABC. Tính diện tích mặt cầu ngoại tiếp tứ diện OABC.    

Xem đáp án » 24/07/2020 7,887

Câu 6:

Cho số phức z0. Khẳng định nào sau đây sai

Xem đáp án » 24/07/2020 7,837

Câu 7:

Số 2018201920192020 có bao nhiêu chữ số?

Xem đáp án » 24/07/2020 7,160
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua