Câu hỏi:

29/07/2020 180 Lưu

Cho hàm số y=f(x) liên tục trên , có đạo hàm f'(x)=x3(x1)2(x+2). Hỏi hàm số y=f(x) có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Ta có thể lập bảng xét dấu của f'(x) tuy nhiên thì ta có thể dùng mẹo như sau. Tại x=0; x=-2 thì y' đổi dấu do có mũ la lẻ còn x=1 thì không đổi dấu do mũ là chẵn. Vì vậy ta có thể có 2 cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án C.

Vì hàm số y = x3 + 1 là một đa thức có y’ = 3x2 ≥ 0, ∀x ∈ ℝ nên nó là hàm đồng biến trên ℝ.

Câu 2

Lời giải

Đáp án B.

Mỗi đường kính là một trục đối xứng của hình tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP