Câu hỏi:
27/01/2021 1,336Cho tam giác ABC có trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp O. gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB.
Phép vị tự tâm G tỉ số -1/2 biến thành
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi A’ là điểm đối xứng với A qua tâm O.
*Chứng minh BHCA’ là hình bình hành:
Ta có: BH// CA' ( vì cùng vuông góc CA)
A'B // CH ( vì cùng vuông góc với AB)
Do đó, tứ giác BHCA' là hình bình hành, có 2 đường chéo A'H và BC cắt nhau tại trung điểm mỗi đường
Mà D là trung điểm của BC nên D là trung điểm của A'H.
Suy ra H, A', D thẳng hàng và DO là đường trung bình của tam giác AHA’
⇒ ⇒ phép vị tự tâm G tỉ số -1/2 biến thành .
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường thẳng d và d’ cắt nhau. Có bao nhiêu phép vị tự biến d thành d’?
Câu 3:
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình : 3x + y + 6 = 0. Qua phép vị tự tâm O(0;0) tỉ số k = 2, đường thẳng d biến thành đường thẳng d’ có phương trình.
Câu 4:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm I(1;2) tỉ số k = 5, biến điểm M(2;-3) thành điểm M’ có tọa độ:
Câu 5:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm O(0;0) tỉ số k = -3, biến điểm M(-4;3) thành điểm M’ có tọa độ
Câu 6:
Trong mặt phẳng tọa độ Oxy phép vị tự H(1;2) tỉ số k = -3 điểm M(4;7) biến thành điểm M’ có tọa độ
Câu 7:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm H(1;-3) tỉ số k = 1/2, biến đường tròn (C) có phương trình : thành đường tròn (C’) có phương trình:
về câu hỏi!