Câu hỏi:
01/09/2020 3,869Cho tam giác ABC nội tiếp đường tròn (O;R). Điểm A cố định, dây BC có độ dài bằng R, G là trọng tâm tam giác ABC. Khi A di động trên (O) thì G di động trên đường tròn (O’) có bán kính bằng bao nhiêu?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có tam giác OBC đều, đường cao OI = (R√3)/2
⇒ I chạy trên đường tròn tâm O bán kính (R√3)/2.
Vì A cố định, G là trọng tâm tam giác ABC nên
⇒ có phép vị tự tâm A tỉ số k = 2/3 biến đường tròn (O;(R√3)/2) thành đường tròn (O';R’) với
Chọn đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường thẳng d và d’ cắt nhau. Có bao nhiêu phép vị tự biến d thành d’?
Câu 3:
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình : 3x + y + 6 = 0. Qua phép vị tự tâm O(0;0) tỉ số k = 2, đường thẳng d biến thành đường thẳng d’ có phương trình.
Câu 4:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm I(1;2) tỉ số k = 5, biến điểm M(2;-3) thành điểm M’ có tọa độ:
Câu 5:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm O(0;0) tỉ số k = -3, biến điểm M(-4;3) thành điểm M’ có tọa độ
Câu 6:
Trong mặt phẳng tọa độ Oxy phép vị tự H(1;2) tỉ số k = -3 điểm M(4;7) biến thành điểm M’ có tọa độ
Câu 7:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm H(1;-3) tỉ số k = 1/2, biến đường tròn (C) có phương trình : thành đường tròn (C’) có phương trình:
về câu hỏi!