Câu hỏi:

01/09/2020 4,037

Cho tam giác ABC nội tiếp đường tròn (O;R). Điểm A cố định, dây BC có độ dài bằng R, G là trọng tâm tam giác ABC. Khi A di động trên (O) thì G di động trên đường tròn (O’) có bán kính bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có tam giác OBC đều, đường cao OI = (R√3)/2

I chạy trên đường tròn tâm O bán kính (R√3)/2. 

Vì A cố định, G là trọng tâm tam giác ABC nên  AG=  23AI

  có phép vị tự tâm A tỉ số k = 2/3 biến đường tròn (O;(R√3)/2) thành đường tròn (O';R’) với R'=  R32.  23=R33

Chọn đáp án C

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Không có phép vị tự nào biến d thành d’ (Phép vị tự biến một đường thẳng thành đường thẳng song song hoặc trùng với nó).

Đáp án A

Câu 2

Lời giải

Gọi O là tâm đường tròn

Để qua phép vị tự  V biến đường tròn (C)  thành chính nó thì sẽ biến tâm đường tròn O thành chính nó.

Suy ra, tâm vị tự chính là tâm đường tròn.

Vì R' = R nên k =  1 hoặc k= -1

* Vậy có hai phép vị tự thỏa mãn :

    + Phép vị tự tâm O tỉ số 1 và phép vị  tự tâm O tỉ số - 1 

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP