Cho hàm số , có các khẳng định sau.
I. Hàm số luôn đồng biến trên
II. Hàm số có một điểm cực tiểu là x = 0
III. Giá trị lớn nhất bằng 2017.
IV. Hàm số luôn nghịch biến trên
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Quảng cáo
Trả lời:

Đáp án B.
Ta có: Tập xác định của hàm số là R nên
Ta có bảng biến thiên
(I) sai vì hàm số chỉ đồng biến trên ;
(II) đúng là hàm số đạt cực tiểu x = 0; EM NHÌN KĨ BẢNG BIẾN THIÊN NHÉ!
(III) sai vì giá trị nhỏ nhất của hàm số là 2017
(IV) sai vì hàm số nghịch biến trên
Lỗi sai
Ø Có bạn sẽ nhìn nhanh và nhầm và kết luận là I đúng
Ø Có bạn sẽ không xét tại x = 0 vì tại đó y' không xác định. Hàm số vẫn đạt cực tiểu tại x = 0. Ta xét các điểm cực trị làm y' = 0 hoặc y' không xác định.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.
B. Hàm số đã cho đồng biến trên khoảng
C. Đồ thị hàm số đã cho có một tiệm cận ngang là trục Ox
D. Toàn bộ đồ thị hàm số đã cho nằm ở phía trên trục hoành
Lời giải
Đáp án B
Câu 2
A. Với mọi và , ta có .
B. Với mọi và , ta có .
C. Với mọi và , ta có .
D. Với mọi và , ta có
Lời giải
Đáp án A.
Cho hàm số f(x) có và f '(x) = 0 chỉ tại một số hữu hạn điểm thuộc R. Nên Hàm số f(x) nghịch biến trên R nên
Ta có ; và
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.