Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số có hai tiệm cận ngang
A. m > 0
B. m < 0
C. m = 0
D. Không tồn tại m
Quảng cáo
Trả lời:
Đáp án A.
Ta có và
. Từ đó, suy ra các giới hạn tồn tại và hữu hạn khi và chỉ khi các giới hạn tồn tại, hữu hạn và khác không. Do các giới hạn vừa nêu tồn tại, hữu hạn và khác 0 khi và chỉ khi m > 0.
Chú ý và Lỗi sai
* Định nghĩa: Cho hàm số xác định trên
Nếu thì là tiệm cận ngang.
Từ định nghĩa tiệm cận ngang của đồ thị hàm số suy ra các giá trị m cần tìm là các giá trị sao cho tồn tại giới hạn của hàm số đã cho khi x tiến ra và khi x tiến ra , đồng thời hai giới hạn đó phải khác nhau.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.
B. Hàm số đã cho đồng biến trên khoảng
C. Đồ thị hàm số đã cho có một tiệm cận ngang là trục Ox
D. Toàn bộ đồ thị hàm số đã cho nằm ở phía trên trục hoành
Lời giải
Đáp án B
Câu 2
A. Với mọi và , ta có .
B. Với mọi và , ta có .
C. Với mọi và , ta có .
D. Với mọi và , ta có
Lời giải
Đáp án A.
Cho hàm số f(x) có và f '(x) = 0 chỉ tại một số hữu hạn điểm thuộc R. Nên Hàm số f(x) nghịch biến trên R nên
Ta có ; và
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.