Câu hỏi:

07/08/2020 4,917 Lưu

Gọi(T) là tiếp tuyến của đồ thị y=x+1x+2C tại điểm có tung độ dương, đồng thời (T)cắt hai tiệm của  (C) lần lượt tại A và B sao cho độ dài AB nhỏ nhất. Khi đó (T) tạo với hai trục tọa độ một tam giác có diện tích bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi Ma;a+1a+2Cy'a=1a+22 nên phương trình tiếp tuyến của (C) tại M là

y=a+1a+2=1a+22xay=xa+22+a2+2a+2a+22d 

Đường thẳng (d) cắt TCĐ tại A2;aa+2IA=2a+2 

Đường thẳng (d) cắt TCN tại B2a+2;1IB=2a+2 

Suy ra IA.IB=4mà AB2=IA2+IB22.IA.IB=8AB22

Dấu “=” xảy ra khi và chỉ khi 2a+2=2a+2a+2=1a=1a=3 

Mà điểm M có tung  độ dương M3;2. Vậy d:y=x+5S=252. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Số đoạn thẳng được tạo thành là C102=45.

Lời giải

Đáp án D

Phương trình đã cho x2x=0xx1=0x=0x=1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP