Câu hỏi:

09/08/2020 440

Gọi S là tập các số tự nhiên có 4 chữ số phân biệt. Chọn ngẫu nhiên một số từ S. Xác suất để chọn được số lớn hơn 2500 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Gọi số có 4 chữ số có dạng abcd¯ (a, b, c, d là các chữ số, a0).

Số phần tử của không gian mẫu n(S) = 9.9.8.7 = 4536

Gọi A là biến cố “Chọn được số lớn hơn 2500”.

  • Trường hợp 1: a > 2

Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.

Chọn b: khác a → có 9 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có 7.9.8.7 = 3528 số.

  • Trường hợp 2: a = 2, b > 5

Chọn a: a = 2 → có 1 cách chọn.

Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.

Chọn c: khác a, b → có 8 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có 1.4.8.7 = 224 số.

  • Trường hợp 3: a = 2, b = 5, c > 0

Chọn a: a = 2 → có 1 cách chọn.

Chọn b: b = 5 → có 1 cách chọn.

Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Chọn d: khác a, b, c → có 7 cách chọn.

Vậy trường hợp này có 1.1.7.7 = 49 số.

  • Trường hợp 4: a = 2, b = 5, c = 0, d > 0

Chọn a: a = 2 → có 1 cách chọn.

Chọn b: b = 5 → có 1 cách chọn.

Chọn c: c = 0 → có 1 cách chọn.

Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.

Vậy trường hợp này có 1.1.1.7 = 7 số.

Như vậy nA=3528+224+49+7=3808PA=38084536=6881.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Nếu 9log2x+4logy2=12logx.logy thì

Lời giải

Đáp án C

Điều kiện xác định x, y > 0.

Em có:

9log2x+4logy2=12logx.logy3logx212logx.logy+2logy2=0

Câu 2

Cho hàm số phù hợp với bảng biến thiên sau

Phát biểu nào sau đây đúng?

Lời giải

Đáp án B

Nhìn vào bảng biến thiên em thấy:

A. Sai vì hàm số có 2 điểm cực trị.

C. Sai vì hàm có giá trị cực tiểu bằng -1 tại x = 1.

D. Sai vì hàm số không có GTLN và GTNN trên .

B. Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay