Câu hỏi:

11/08/2020 475 Lưu

Cho phương trình:

(m 1)log122x22+4m5log121x2+4m4=0 (với m là tham số). Gọi S= [a;b] là tập các giá trị của m để phương trình có nghiệm trên đoạn 52;4. Tính a+b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

- Biến đổi phương trình về phương trình bậc hai đối với log2x2 và đặt ẩn phụ t=log2x2 với t1;1

- Rút m theo t và xét hàm f(t) để tìm ra điều kiện của m.

Cách giải: 

m1log122x22+4m5log121x2+4m4=0x>2

m1log22x2+m5log2x2+m+1=0

Đặt y=log2x2x52;4t1;1

Phương trình đã cho trở thành:

m1t2+m5t+m+1=0

mt2+t+1=t2+5t+1m=t2+5t+1t2+t+1=1+4tt2+t+1

vì t2+t+1>0t1;1

Xét hàm số:y=1+4tt2+t+1 trên 1;1

Có: y't=4t2+4t2+t+12

y'x=04t2+4t2+t+12=0t=±11;1

Ta có bảng biến thiên:

m3;73a+b=23.

Chú ý khi giải: HS thường nhầm lẫn các công thức biến đổi logarit dẫn đến kết quả sai, hoặc nhầm lẫn trong bước xét hàm f(t) để đi đến kết luận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Công thức tính đạo hàm hàm hợp: f;ux=u'x.f'u .

Công thức tính đạo hàm: lnu'=u'u

Cách giải:

Có: fx=lnx2+1f'x=x2+1'x2+1=2xx2+1

Chú ý khi giải: HS thường nhầm lẫn: sử dụng công thức tính đạo hàm lnx'=1x mà không chú ý đến công thức tính đạo hàm hàm hợp.

Lời giải

Đáp án A

Sử dụng các công thức biến đổi logarit như: logab=1logba;logabc=logab+logac

Cách giải:

Ta có: logabc3=215

log3abc=152

log3a+log3b+log3c=152

1loga3+1logb3+log3c=152

log3c=1521loga31logb3=152124=3

log3c=13.

Chú ý khi giải: HS thường nhầm lẫn công thức logarit của một tích, hoặc đến bước cuối tính logc3 lại kết luận nhầm log3c=3 dẫn đến chọn nhầm đáp án.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP