Câu hỏi:

11/08/2020 182

Phương trình: x13+mm+1=2x214 có nghiệm x khi:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

- Chia cả hai vế của phương trình cho x+1>0 và đặt ẩn phụ t=x14x+14 .

- Từ điều kiện x1 ta tìm được điều kiện của t là 0t<1.

- Từ phương trình ẩn t, rút m=ft và xét hàm ft trên 0;1 , từ đó suy ra điều kiện của

Cách giải:

Phương trình: 3x1+mx+1=2x214 (Điều kiện: x1)

3x1+mx+1=2x14.x+14*

Ta có với x1 Chia hai vế phương trình (*) cho  ta có: 3x1x+1+m=2x14x+141

Đặt t=x14x+14t4=x1x+1

Với x1 thì hàm số 0x1x+1=12x+1<10t4<10t<1

Phương trình (1) trở thành: 3t22t+m=02

Phương trình (*) có nghiệm  phương trình (2) có nghiệm: 0t<1

Xét hàm y=ft=3t22t trên 0;1 ta có:

f't=6t2=0t=130;1

Bảng biến thiên:

Từ bảng biến thiên ta thấy để phương trình 3t22t+m=0 có nghiệm trong 0;1 thì đường thẳng y=mphải cắt đồ thị hàm số y=ft=3t22t tại ít nhất 1 điểm.

Do đó 13m<11<m13

Vậy 1<m13 thì phương trình đã cho có nghiệm.

Đáp án B.

Chú ý khi giải:

- HS thường quên không tìm điều kiện của ẩn phụ hoặc tìm sai điều kiện (một số bạn chỉ đặt điều kiện sẽ dẫn đến kết quả sai) t t 0 

- Ở bước kết luận, một số bạn nhầm lẫn điều kiện để có nghiệm và có 2 nghiệm nên sẽ chọn để phương trình có 2 nghiệm cũng là một kết quả sai. 1 0 m 3  

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính đạo hàm của hàm số sau: fx=lnx2+1

Xem đáp án » 11/08/2020 14,730

Câu 2:

Cho a, b, c là ba số thực dương, khác 1 và abc1. Biết loga3=2,logb3=14logabc3=215. Khi đó, giá trị của logc3 bằng bao nhiêu? 

Xem đáp án » 11/08/2020 14,662

Câu 3:

Cho hàm số y=x33mx2+6, giá trị nhỏ nhất của hàm số trên 0;3 bằng 2 

Xem đáp án » 12/08/2020 7,520

Câu 4:

Cho hàm số y=fx xác định, liên tục và có đạo hàm trên đoạn a,b. Xét các khẳng định sau:

1. Hàm số fx đồng biến trên a;b thì f'x>0,xa;b

2. Giả sử fa>fc>fb,xa;b suy ra hàm số nghịch biến trên a;b

3. Giả sử phương trình f'x=0 có nghiệm là x=m khi đó nếu hàm số y=fx đồng biến trên m;b thì hàm số y=fx nghịch biến trên a,m

4. Nếu f'x0,xa;b, thì hàm số đồng biến trên a;b

Số khẳng định đúng trong các khẳng định trên là

Xem đáp án » 11/08/2020 3,541

Câu 5:

Cho khối chóp S.ABC có thể tích là a33. Tam giác SAB có diện tích là 2a2. Tính khoảng cách d từ C đến mặt phẳng (SAB). 

Xem đáp án » 11/08/2020 3,341

Câu 6:

Trong các hàm số sau, hàm số nào nghịch biến trên khoảng 0;2

Xem đáp án » 11/08/2020 2,484

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=2a, BC=a. Các cạnh bên của hình chóp bằng nhau và bằng a2. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. K là điểm trên cạnh AD sao cho KD=2KA. Tính khoảng cách giữa hai đường thẳng MN và SK.

Xem đáp án » 11/08/2020 2,467
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua