Câu hỏi:

14/08/2020 224 Lưu

Cho hình chóp tứ diện đều S.ABCD có canh đáy a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành 2 phần. Tính tỉ số thể tích của hai phần đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Áp dụng định lí Menelaus cho ΔSCD ta có:

NSNC.MCMD.PDPS=1PDPS=12PDSD=13.

Ta có: VP.BQDCVS.ABCD=13.dP,ABCD.SBCDQ13.dS,ABCD.SABCD=13.34=14

VP.BQDC=14VS.ABCD.

VP.NCBVS.ABCD=VP.NCB2.VD.SCB=13.dP,SCB.SΔNCB2.13.dD,SCB.SΔSCB=12.23.12=16VP.NCB=16VS.ABCD.

Do đó VPQD.NBC=VP.BQDC+VP.NCB=512VS.ABCD.

Vậy tỉ số thể tích của 2 phần cần tìm là 75

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

PT2x6x+2.3x2=02x13x213x=0

2x213x=0x=1x=0.

Vậy tổng lập phương các nghiệm của PT trên bằng 1.

Câu 2

Lời giải

Đáp án D

Ta có y'=2x22x5x22=1x22>0  x2

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP