Câu hỏi:

15/08/2020 204

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A1;3;4 B3;1;0. Gọi M là điểm trên mặt phẳng Oxz sao cho t ổng khoảng cách từ M đến AB là ngắn nhất. Tìm hoành độ x0 của điểm M.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Rõ ràng AB đều nằm về cùng một phía đối với mặt phẳng Oxz  (do đều có tung độ dương). Gọi A' là điểm đối xứng của A qua Oxz  thì A'=1;3;4 . Ta có MA+MB=MA'+MB  (do MOxz   và A' là điểm đối xứng của A qua Oxz ). Do đó  MA+MB ngắn nhất MA'+MB   ngắn nhất A',M,N  thằng hàng, tức M là giao điểm của A'B Oxz .

Ta có A'B=4;4;4  . Suy ra phương trình đường thẳng A'B:x=3+ty=1+tz=t  .

Phương trình mặt phẳng (Oxz)  là y=0. Giải phương trình 1+t=0t=1  .

Suy ra M=2;0;1 . Do đó M có hoành độ bằng 2. Vậy B là đáp án đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A.

Đặt Ω  là không gian mẫu. Ta có nΩ=28=256 .

Gọi A là biến cố “Không có hai người nào ngồi cạnh nhau phải đứng dậy”.

- TH1: Không có ai tung được mặt ngửa. Trường hợp này có 1 khả năng xảy ra.

- TH2: Chỉ có 1 người tung được mặt ngửa. Trường hợp này có 8 khả năng xảy ra.

- TH3: Có 2 người tung được mặt ngửa nhưng không ngồi cạnh nhau: Có 8.52=20  khả năng xảy ra (do mỗi người trong vòng tròn thì có 5 người không ngồi cạnh).

- TH4: Có 3 người tung được mặt ngửa nhưng không có 2 người nào trong 3 người này ngồi cạnh nhau. Trường hợp này có C8388.4=16  khả năng xảy ra.

Thật vậy:

+ Có C83   cách chọn 3 người trong số 8 người.

+ Có 8 khả năng cả ba người này ngồi cạnh nhau.

+ Nếu chỉ có 2 người ngồi cạnh nhau. Có 8 cách chọn ra một người, với mỗi cách chọn ra một người có 4 cách chọn ra hai người ngồi cạnh nhau và không ngồi cạnh người đầu tiên (độc giả vẽ hình để rõ hơn). Vậy có 8.4 khả năng.

- TH5: Có 4 người tung được mặt ngửa nhưng không có 2 người nào trong 4 người này ngồi cạnh nhau. Trường hợp này có 2 khả năng xảy ra.

Suy ra 

nA=1+8+20+16+2=47PA=47256

Lời giải

Đáp án C.

Ta có:x24x+3=0x=1x=3  mà  x = 1 và x= 3  không là nghiệm của tử thức

 x=1x=3  là các tiệm cận đứng của đồ thị hàm số đã cho.

Lại có bậc tử nhỏ hơn bậc mẫu  y=0 là tiệm cận ngang của đồ thị hàm số đã cho.

Vậy đồ thị hàm số đã cho có 3 đường tiệm cận

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay