Câu hỏi:

18/08/2020 214 Lưu

Cho hàm số fx=mπ+cos2x. Tìm tất cả các giá trị của tham số m để fx có một nguyên hàm Fx thỏa mãn F0=14,Fπ4=π4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D.

Ta có:

fxdx=mπ+1+cos2x2dx=mπx+x2+sin2x4+C=Fx 

Lại có: f0=14Fπ4=π4C=14m4+π8+14+14=0m=π22.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B.

Ta có y'=4x34x. Gọi Ma;a42a21 là tọa độ tiếp điểm. tiếp tuyến song song với trục hoành thì có hệ số góc bằng 0.

Hệ số góc của tiếp tuyến tại M là

k=y'a=4a34a=0a=0M0;1a=1M1;2a=1M1;2

Do đó có 2 tiếp tuyến là y = -1 và y = -2

Câu 2

Lời giải

Đáp án A.

Ta có: 3fx+1dx=3fxdx+x+C=3Fx+x+C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP