Câu hỏi:

19/08/2020 289 Lưu

Cho khối chóp tứ giác đều S.ABCD có thể tích là V. Nếu tăng độ dài cạnh đáy lên ba lần và giảm độ dài đường cao xuống hai lần thì ta được khối chóp mới có thể tích là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Kí hiệu như hình vẽ với SOABCDvà tứ giác ABCD là hình vuông.

Ta có V=13SO.SABCD=13SO.AB2

Thể tích mới V'=13.12SO.3AB2=92V

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Điều kiện: x2. Do M là giao điểm của đồ thị hàm số y=x+1x2 với trục hoành nên M1;0

Ta có y'=3x22 nên hệ số góc của tiếp tuyến tại M là k=y'1=13 

Do đó suy ra phương trình tiếp tuyến là y=13x13x+3y+1

Lời giải

Đáp án D

Ta có

y'=4x3+2m2x;y'=0x=0x2=m22

Để hàm số có ba điểm cực trị thì phương trình y' = 0 có 3 nghiệm phân biệt m22>0m>2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP