Câu hỏi:

19/08/2020 226 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của AB và M là trung điểm của AD. Khoảng cách từ I đến mặt phẳng (SMC) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp ánA

Do ΔSAB đều nên SIAB

Mặt khác SABABCDSIABCD

Dựng IECM;IFSEdI;SCM=IF

Ta có: CM=a52;SICM=SABCDSIBCSMCD=SAIM 

=a2a24a24a28=3a28 

Do đó IE=2SICMCM=3a510;SI=a32 

Lại có d=IF=SI.IESI2+IE2=3a28.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Điều kiện: x2. Do M là giao điểm của đồ thị hàm số y=x+1x2 với trục hoành nên M1;0

Ta có y'=3x22 nên hệ số góc của tiếp tuyến tại M là k=y'1=13 

Do đó suy ra phương trình tiếp tuyến là y=13x13x+3y+1

Lời giải

Đáp án D

Ta có

y'=4x3+2m2x;y'=0x=0x2=m22

Để hàm số có ba điểm cực trị thì phương trình y' = 0 có 3 nghiệm phân biệt m22>0m>2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP