Câu hỏi:
26/08/2020 268Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 3 đỉnh. Tính xác suất để 3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án C
Để các tam giác đó là các tam giác vuông thì cạnh huyền của tam giác đó phải là đường kính của đường tròn.
Với mỗi đường kính của đường tròn (giả sử là AB), có thể nối với 16 đỉnh để tạo thành các tam giác vuông không cân (không nối với C và D) (hình vẽ).
Mà có tất cả 10 đường kính, như vậy số tam giác thỏa mãn đề bài là: 10*16=160.
Xác suất cần tính là .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Số véctơ khác có điểm đầu và điểm cuối là hai trong 6 đỉnh của lục giác ABCDEF là
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(−2;3;4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng nào sau đây song song với mặt phẳng (ABC)?
Câu 7:
Đường tiệm cận xiên của đồ thị hàm số tạo với hai trục tọa độ một tam giác có diện tích bằng
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
về câu hỏi!