Câu hỏi:

31/08/2020 2,082 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2-2;) và B(2;2;-4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T=a2+b2+c2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Do đó OA¯;OB¯=-41;1;1OAB:x+y+z=0 

Ta có: IO=IAIO=IBIOABa2+b2+c2=a2+b-22+c+22a2+b2+c2=a-22+b-22+c+42a+b+c=0a=2b=0c=-2 

Do đó T=a2+b2+c2=8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Gọi số tự nhiên cần lập có dạng abc¯a,b,c0;1;2;3;4;5;6;a0 

Bài toán không yêu cầu số tự nhiên có 3 chữ số khác nhau.

Chọn c = {0;2;4;6} có 4 cách chọn, chọn a0 có 6 cách chọn và chọn b có 7 cách chọn.

Theo quy tắc nhân có: 4.6.7 = 168 số.

Lời giải

Đáp án B

Gọi E là trung điểm AC

Khi đó NE//AB suy ra AB;MN^=NE;MN^ 

Do đó [ENM^=30°ENM^=150° 

Lại có NE=AB2=a2;ME=a2 nên tam giác MNE cân tại E suy ra ENM^=30°NEM^=120°

Suy ra MN=ME2+NE2-2ME.NE.cosNEM^=a32.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP