Câu hỏi:

13/09/2020 4,855

Xác định m để phương trình m=x2-6x-7 có 4 nghiệm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

m=x2-6x-7 là phương trình hoành độ giao điểm của đường thẳng y = m và đồ thị (C): y=x2-6x-7

Vẽ (P): y=x2-6x-7, lấy đối xứng phần phía dưới Ox của (P) lên trên Ox và xóa đi phần phía dưới Ox (vì y=x2-6x-7,xR), ta được đồ thị (C).

Dựa vào đồ thị: phương trình m=x2-6x-7 có 4 nghiệm phân biệt khi m0;16.

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có: x2-4x+6+3m=03m=-x2+4x-6

Số nghiệm của phương trình x2-4x+6+3m=0 là số giao điểm của đường thẳng y=3m và parabol y=-x2+4x-6

Parabol y=-x2+4x-6 có hoành độ đỉnh x=2-1;3, hệ số a=-1<0 nên đồng biến khi x<2 và nghịch biến khi x>2.

Bảng biến thiên của hàm số y=-x2+4x-6 trên đoạn -1;3:

 

Từ bảng biến thiên ta thấy, nếu phương trình có nghiệm trên đoạn -1;3 thì đường thẳng y=3m phải cắt parabol tại ít nhất 1 điểm có hoành độ thuộc đoạn -1;3.

Phương trình có nghiệm thuộc đoạn -1;3-113m-2113m23

Đáp án cần chọn là: B

Lời giải

Điều kiện xác định xR

Đặt t=x2+1,t1

Phương trình trở thành t2-1-4t-m+1=0t2-4t=m2

Để phương trình có 4 nghiệm phân biệt thì phương trình (2) có hai nghiệm phân biệt lớn hơn 1.

Xét hàm số ft=t2-4t có đồ thị là parabol có hoành độ đỉnh x=21;+ nên ta có bảng biến thiên:

Dựa BBT ta thấy để (2) có hai nghiệm phân biệt lớn hơn 1 thì -4<m<-3

Vậy không có giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP