Câu hỏi:
14/09/2020 440Từ các chữ số {0;1;2;3;4;5;6} viết ngẫu nhiên một số tự nhiên gồm 6 chữ số khác nhau có dạng . Tính xác suất để viết được các số thỏa mãn điều kiện a1 + a2 = a3 + a4 = a5 + a6
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án B
Phương pháp: Xét các trường hợp:
TH1:
TH2:
TH3:
Cách giải:
TH1: , ta có 0 + 5 = 1 + 4 = 2 + 3 = 5
- Nếu (a1;a2) = (0;5) => có 1 cách chọn (a1a2)
Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Tương tự (a5a6) có 2 cách chọn.
=>Có 8 số thỏa mãn.
- Nếu (a1;a2) ≠ (0;5) =>có 2 cách chọn (a1a2),2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Tương tự (a5a6) có 2 cách chọn.
=>Có 32 số thỏa mãn.
Vậy TH1 có: 8 + 21 = 40 số thỏa mãn.
TH2: ta có 0+6=1+5=2+4=6
Tương tự như TH1 có 40 số thỏa mãn.
TH3: , ta có 1+6-2+5=3+4=7
Có 3 cách chọn (a1a2) , hai số này có thể đổi chỗ cho nhau nên có 6 cách chọn.
Tương tự có 4 cách chọn (a3a4) và 2 cách chọn (a5a6).
Vậy TH3 có 6.4.2 = 48 số thỏa mãn.
Vậy có tất cả 40 +40 +48 = 128 số có 6 chữ số khác nhau thỏa mãn
Để viết một số có 6 chữ số khác nhau bất kì có 6.6.5.4.3.2 = 4320 số.
Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hai số phức z1,z2 thỏa mãn |z1| = 2, |z2| = . Gọi M, N là các điểm biểu diễn cho z1 và iz2 Biết góc MON = 300 Tính
Câu 3:
Cho hàm số , gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m - 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1;y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2;y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S
Câu 4:
Biết diện tích hình phẳng giới hạn bởi các đường y = sinx, y = cosx, x = 0, x = a (với là . Hỏi số a thuộc khoảng nào sau đây?
Câu 5:
Trước kỳ thi học kỳ 2 của lớp 11 tại trường FIVE, giáo viên Toán lớp FIVA giao cho học sinh để cương ôn tập gồm 2n bài toán, n là số nguyên dương lớn hơn 1. Đề thi học kỳ của lớp FIVA sẽ gồm 3 bài toán được chọn ngẫu nhiên trong số 2n bài toán đó. Một học sinh muốn không phải thi lại, sẽ phải làm được ít nhất 2 trong số 3 bài toán đó. Học sinh TWO chỉ giải chính xác được đúng 1 nửa số bài trong đề cương trước khi đi thi, nửa còn lại học sinh đó không thể giải được. Tính xác suất để TWO không phải thi lại ?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!