Câu hỏi:
25/09/2020 241Cho hình chóp S.ABCD có đáy hình chữ nhật, AB = a; AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp: Đưa khoảng cách từ M đến (SAC) về khoảng cách từ H đến (SAC).
Cách giải: Gọi H là trung điểm của AB ta có SH(ABCD)
Ta có (SC;(ABCD)) = (SC;HC) = Góc SCH =
=>∆SHC vuông cân tại H =>
Trong (ABD) kẻ HIAC,trong (SHI) kẻ HKSI ta có:
Ta có ∆AHI: ∆A CB(g.g) =>
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hai số phức z1,z2 thỏa mãn |z1| = 2, |z2| = . Gọi M, N là các điểm biểu diễn cho z1 và iz2 Biết góc MON = 300 Tính
Câu 3:
Cho hàm số , gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng m - 2. Biết đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm A(x1;y1) và cắt tiệm cận ngang của đồ thị hàm số tại điểm B(x2;y2). Gọi S là tập hợp các số m sao cho x2 + y1 = -5. Tính tổng bình phương các phần tử của S
Câu 4:
Biết diện tích hình phẳng giới hạn bởi các đường y = sinx, y = cosx, x = 0, x = a (với là . Hỏi số a thuộc khoảng nào sau đây?
Câu 5:
Trước kỳ thi học kỳ 2 của lớp 11 tại trường FIVE, giáo viên Toán lớp FIVA giao cho học sinh để cương ôn tập gồm 2n bài toán, n là số nguyên dương lớn hơn 1. Đề thi học kỳ của lớp FIVA sẽ gồm 3 bài toán được chọn ngẫu nhiên trong số 2n bài toán đó. Một học sinh muốn không phải thi lại, sẽ phải làm được ít nhất 2 trong số 3 bài toán đó. Học sinh TWO chỉ giải chính xác được đúng 1 nửa số bài trong đề cương trước khi đi thi, nửa còn lại học sinh đó không thể giải được. Tính xác suất để TWO không phải thi lại ?
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!