Câu hỏi:

31/10/2020 601

Chứng minh rằng: n+6n+32 với nΝ

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sơ đồ con đường

Lời giải chi tiết

Phân tích biểu thức n+6n+3=(n+3+3)(n+3)

Để đơn giản biểu thức, ta đặt

x=n+3

Sau đó thay vào biểu thức và xét tính chẵn, lẻ của từng thừa số trong tích.

n+6n+3=(n+3+3)(n+3)

Đặt x=n+3 nên n+6n+3=(x+3)x.

+) Nếu x lẻ thì x+3 chẵn nên n+6n+32

+) Nếu x chẵn thì hiển nhiên n+6n+32

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng tích của hai số lẻ là một số lẻ

Xem đáp án » 31/10/2020 737

Câu 2:

Tìm x để x+2n+2k+22

Xem đáp án » 31/10/2020 489

Câu 3:

Tìm giá trị của aaΝ để 2n+a tổng chia hết cho 2.

Xem đáp án » 22/12/2020 488

Câu 4:

Không làm phép tính hãy xét xem hiệu 2002200120012000 có chia hết cho 2 không?

Xem đáp án » 31/10/2020 473

Câu 5:

Tìm điều kiện của n sao cho (n+20122013)(n+20132012)2

Xem đáp án » 31/10/2020 464

Câu 6:

Chứng minh 2 số tự nhiên liên tiếp có một số chia hết cho 2.

Xem đáp án » 31/10/2020 422

Bình luận


Bình luận