Câu hỏi:

29/01/2021 1,991

Cho điểm M(5;2) và đường thẳng (d): 3x – y + 2 = 0. Tìm ảnh của M qua phép đối xứng qua đường thẳng (d)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

+ Gọi (d1)  là đường  thẳng đi qua M(5 ; 2) và vuông góc với d. 

Khi đó, đường thẳng (d1) có vecto chỉ phương là ( 3; -1) nên có vecto pháp tuyến  (1; 3)

 Phương  trình đường thẳng (d1) là :  

 1. (x - 5) +  3. ( y - 2 ) = 0  hay  x+ 3y -11 = 0

+ Giao điểm của d  và (d1) là nghiệm hệ phương trình: 

 x +3y -11= 03x - y +2 = 0x= 12y= 72I(12; 72)

+ Đối xứng qua đường thẳng d biến M thành M' nên I là trung điểm của MM'

suy ra:  xM'= 2xI- xM= 2.  12-  5 =  - 4yM'= 2yI- yM= 2.  72-  2 =  5M' ( - 4; 5)

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho đường thẳng d: 2x + y – 1 = 0. Phương trình đường thẳng d’ đối xứng với d qua gốc tọa độ là:

Lời giải

Đáp án A

Phép đối xứng qua gốc tọa độ O, biến đường thẳng d thành đường  thẳng d'.

Biến mỗi điểm M(x, y) thuộc d  thành điểm M'(x'; y' ) thuộc d'

Ta có:  x'=xy'=yx= -x'y= -y'   (1)

Vì điểm M(x; y)  thuộc d nên:  2x + y - 1 = 0   (2)

Thay (1) vào (2) ta được:  2. (- x') +  ( - y')  -1  = 0  hay 2x' + y' + 1 = 0 

Vậy  phương trình đường thẳng cần tìm:  2x + y +1 =0

Lời giải

Đáp án C

* Qua phép quay tâm O, biến đường tròn (C) thành đường tròn (C' )

Biến tâm I( 0; -1) thành tâm I' ; R' =R =  3

Khi đó,2 điểm I  và I' đối xứng với nhau qua O hay O là trung điểm của II' nên  I' (0; 1)

* Qua phép vị tự tâm O, biến (C') thành (C")

Biến tâm I' thành I" và R" = 2R' = 2.3 = 6

Tìm tâm I": 

 OI"=  2OI'x' = 2x= 2.0=0 y' = 2y =2. 1 = 2I" ( 0; 2)

+ Qua phép tịnh tiến, biến đường tròn (C") thành (C"'), biến tâm  I"  thành tâm I"', bán kính R"' = R" = 6

x' = x + a=0+  1 = 1y' = y +b =  2 + 2 =  4 I"' (1; 4)

*Phương trình đường tròn (C"'):(x1)2+y42=36

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay