Câu hỏi:

30/01/2021 256

Cho các hình sau 

1: Hình tròn

2:  Đường thẳng

3: Đoạn thẳng

4. Hình vuông

5. Đa giác đều n cạnh

Trong các hình trên có bao nhiêu hình có vô số trục đối xứng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Trong các hình đã cho thì

1: Hình tròn có vô số trục đối xứng. Trục đối xứng là đường thẳng bất kì đi qua tâm  đường tròn

2:  Đường thẳng có vô số trục đối xứng. Trục đối xứng là đường thẳng d va các đường thẳng vuông góc với d

3: Đoạn thẳng có trục đối xứng là đường thẳng đi qua trung điểm đoạn thẳng và vuông góc đoạn thẳng đó

4. Hình vuông có 4 trục đối xứng: 2 đường chéo và 2 đường thẳng nối trung điểm 2 cạnhđối diện

5. Đa giác đều n cạnh:

   * Nếu n chẵn : có trục đối xứng là các đường chéo; các đường thẳng nối trung điểm 2 cạnh đối diện

   * Nếu n lẻ: có trục đối xứng là các đường thẳng nối 1 đỉnh với trung điểm cạnh  đối diện

Vậy có 2 hình là có vô số trục đối xứng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong Oxy, cho đường thẳng d: 2x - 3y + 1 = 0 . Tìm ảnh của đường thẳng d  qua phép đối xứng tâm I( 2;1)

Lời giải

Đáp án B

Phép đối xứng tâm I(2; 1) biến đường thẳng d thành đường thẳng d'.

Biến mỗi điểm M(x, y) thuộc d thành điểm M' (x'; y') thuộc d'

Vì đường thẳng d' // hoặc trùng với d nên d' có dạng:  2x - 3y + c = 0

Lấy điểm M (1; 0) thuộc d. Tìm ảnh của M qua đối xứng tâm I.

I là trung điểm của MM' nên:

 xM'= 2xI- xM= 2.2 - 1 = 3yM'= 2yI- yM=  2. 1 - 0 = 2M' ( 3;2)

Vì M' thuộc d' nên : 2.3 -3.2 + c= 0 nên c =0

Vậy phương trình d' là : 2x - 3y = 0

Câu 4

Cho đường tròn (O; R), đường kính AB cố định và đường kính CD thay đổi. Tiếp tuyến với đường tròn (O) tại B cắt AC tại E, AD tại F. Tìm tập hợp trực tâm các tam giác CEF và DEF.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hai điểm cố định B, C trên đường tròn (O) và một điểm A thay đổi trên đường tròn đó. Tìm quĩ tích trực tâm H của ABC:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay