Câu hỏi:

13/07/2024 9,682

Tìm số tự nhiên n sao cho 7n+13 và 2n+4 là số nguyên tố cùng nhau

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì 7n+13 và 2n+4 nguyên tố cùng nhau nên ta gọi d = UCLN(7n+13,2n+4)

=>7n+13d và 2n+4d

Có 7n+13d => 2(7n+13)d => 14n+26d

2n+4d => 7.(2n+14)d => 14n+28d

Suy ra (14n+28) – (14n+26)d => 2d => d{1;2}

Nếu d = 1 thì 7n+13 và 2n+4 là nguyên tố cùng nhau

Nếu d = 2 => 7n+132 => 7.(n+1)+62 vì 62 nên 7.(n+1)2 mà UC(7,2) = 1 => n+12

Để n+12 thì n = 2k+1

Vậy để 7n+13 và 2n+4 là số nguyên tố cùng nhau thì n ≠ 2k+1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh rằng với mọi số tự nhiên n thì 2n+3 và 4n+8 là nguyên tố cùng nhau.

Xem đáp án » 13/07/2024 10,009

Câu 2:

Trong các số 28; 81; 44 các số nào là nguyên tố cùng nhau

Xem đáp án » 13/07/2024 1,494
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua