Câu hỏi:

12/07/2024 7,689

Chứng minh:

a, Diện tích của một tam giác bằng nửa tích của hai cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa hai cạnh ấy

b, Diện tích của tứ giác bất kỳ bằng nửa tích của hai đường chéo nhân với sin của góc nhọn tạo bởi hai đường chéo

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, Giả sử tam giác ABC có A^<900 kẻ đường cáo BH. Ta có BH=AB.sinA^

=> SABC=12AC.BH12AB.AC.sinA

b, Giả sử tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O có AOB^=α<900Kẻ AHBD, tại H và CKBD tại K

Ta có: AH = OA.sinα

=> SABD=12BD.AH12BD.OA.sinα

Tương tự: SCBD=12BD.CK12BD.OC.sinα

=> SABCD=SABD+SCBD12BD.OA.sinα12BD.OC.sinα12BD.AC.sinα

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP