Câu hỏi:

19/08/2025 13,979 Lưu

Cho hình chữ nhật ABCD, O là giao điểm hai đường chéo. M thuộc CD và N thuộc AB sao cho DM = BN.

          a) Chứng minh ANCM là hình bình hành, từ đó suy ra các điểm M, O, N thẳng hàng.

          b) Qua M kẻ đuờng thẳng song song vói AC cắt AD ở E, qua N kẻ đường thẳng song song với AC cắt BC ở F. Chứng minh tứ giác ENFM là hình bình hành.

          c) Tìm vị trí của điểm M, N để ANCM là hình thoi.

          d) BD cắt NF tại I.  Chứng minh I là trung điểm của NF

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta chứng minh AN=CMANCMAMCN là hình bình hành.

Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC

Do ANCM là hình bình hành có AC và MN là hai đường chéo

 

 O là trung điểm MN

b. Ta có: EM//AC nên EMD^=ACD^ (2 góc so le trong)

NF//AC nên BNF^=BAC^ (2 góc so le trong)

ACD^=BAC^ (vì AB//DC, tính chất hình chữ nhật)

EMD^=BNF^

Từ đó chứng minh được EDM = FBN (g.c.g)

EM=FN

 

Lại có EM//FN (vì cùng song song với AC)

Nên tứ giác ENFM là hình bình hành

c) Tứ giác ANCM là hình thoi Û AC ^ MN tại O Þ M, N lần lượt là giao điểm của đường thẳng đi qua O, vuông góc AC và cắt CD, AB.

Khi đó M và N là trung điểm của CD và AB.

d) Ta chứng minh được DBOC cân tại OOCB^=OBC^ và NFB^=OCF^ (đv) Þ DBFI cân tại I Þ IB = IF  (1)

Ta lại chứng minh được DNIB cân tại I Þ IN = IB  (2)

Từ (1) và (2) Þ I là trung điểm của NF.

Tue anh Ngo

Tue anh Ngo

cho mình hỏi câu c M và N là trung điểm của CD và AB thì ANCM là hình thoi đâu

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta chứng minh ABEC là hình bình hành mà có Â = 900 Þ tứ giác ABEC là hình chữ nhật.

b) Áp dụng định lý về đường trung bình của tam giác ADCFG=12AD=2cm 

c) Để tứ giác ABEC là hình vuông thì AB = AC ÞDABC phải là tam giác vuông cân tại A.