Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O; R) đường kính BC. Vẽ đường cao AH của tam giác ABC. Đường tròn tâm K đường kính AH cắt AB, AC lần lượt tại D và E
a, Chứng minh tứ giác ADHE là hình chữ nhật và AB.AD = AE.AC
b, Cho biết BC = 25cm và AH = 12cm. Hãy tính diện tích xung quanh và thể tích của hình tạo thành bởi khi cho tứ giác ADHE quay quanh AD
Quảng cáo
Trả lời:
a, Ta có => Tứ giác ADHE là hình chữ nhật
Lại có AB.AD = AH2 = AE.AC nên AB.AD = AE.AC
b, HB = 9cm, HC = 16cm (Lưu ý: AB < AC nên HB < HC)
HD = cm, HE = cm, Sxq = , V =
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng )
b, Chứng minh AH.AK = AI.AB = R.2R = => ĐPCM
c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD
d, Tam giác OCA đều =>
Tính được CD = 2CI = = 25cm; CM = cm, MD = cm, Sxq = 2.π.CM.MD =
Lời giải
a,i, Sử dụng tính chất hai tiếp tuyến cắt nhau có CA = CM và DM = DB nên AC + BD = CM + DM = CD
ii, =
iii, ∆COA:∆ODB (g.g) => AC.BD = OA.OB =
b, với OC = 2R, OM = r, chứng minh được
=> . Từ đó tính được EM = OM.sin =
OE = OM.cos = ; Sxq = 2π.ME.OE = (đvdt)
Và V = π (ĐVTT)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.