Câu hỏi:

13/07/2024 2,396

Cho đường tròn (O) đường kính AB, gọi I là trung điểm OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H

a, Chứng minh tứ giác BIHK nội tiếp

b, Chứng minh AH.AK có giá trị không phụ thuộc vị trí điểm K

c, Kẻ DM  ^ CB, DN  ^ AC. Chứng minh MN, AB, CD đồng quy

d, Cho BC = 25cm. Hãy tính diện tích xung quanh hình trụ tạp thành khi cho tứ giác MCND quay quanh MD

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 1800)

b, Chứng minh AH.AK = AI.AB = 12R.2R = R2 => ĐPCM

c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD

d, Tam giác OCA đều => ABC^=300;MCD^=600

Tính được CD = 2CI = 2.252 = 25cm; CM = 252cm, MD = 2532cm, Sxq = 2.π.CM.MD = 62532πcm2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D.

a, Chứng minh:

i, AC + BD = CD

ii, COD^=900

iii, AC.BD = AB24

b, Gọi E là giao điểm của OC và AM, F là giao điểm của MB và OD. Cho biết OC = 2R, hãy tính diện tích xung quanh và thể tích hình trụ tạo thành khi cho tứ giác EMFO quay quanh EO

Xem đáp án » 13/07/2024 2,517

Câu 2:

Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O; R) đường kính BC. Vẽ đường cao AH của tam giác ABC. Đường tròn tâm K đường kính AH cắt AB, AC lần lượt tại D và E

a, Chứng minh tứ giác ADHE là hình chữ nhật và AB.AD = AE.AC

b, Cho biết BC = 25cm và AH = 12cm. Hãy tính diện tích xung quanh và thể tích của hình tạo thành bởi khi cho tứ giác ADHE quay quanh AD

Xem đáp án » 13/07/2024 1,210

Câu 3:

Điền các kết quả tương ứng của hình trụ vào ô trống:

Xem đáp án » 24/11/2020 464

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store