Câu hỏi:
29/11/2020 990Cho tam giác ABC cân tại A, đường cao AM. Các đường trung tuyến BD, CE cắt nhau tại G. H, K thứ tự là trung điểm của BG, CG.
a) Tứ giác EHKD là hình gì? Vì sao?
b) Cho SABC = S36cm2. Tính SEHKD
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD, M là một điểm tùy ý trên đường chéo BD. Kẻ ME ^ AB; MF ^ AD.
a) Chứng minh: DE = CF;
b) Chứng minh DE ^ FC;
c) Xác định vị trí của điểm M để diện tích tứ giác AMEF lớn nhất
Câu 2:
Cho tam giác ABC và điểm M nằm trong tam giác. Các đường thẳng AM, BM, CM cắt cạnh đối diện của tam giác ABC tại D, E, F. Chứng minh
Câu 3:
Cho tam giác ABC. Trên cạnh AB lấy một điểm E sao cho BE = 3EA. Trên cạnh BC lấy một điểm F sao cho BF = 4FC. Gọi D là giao điểm của AF và CE.
a) Chứng minh SACF = SAEF.
b) Từ E và C kẻ EH, CK vuông góc với AF. Chứng minh EH = CK.
c) Chứng minh CD = DE.
d) Chứng minh SABC = 2SABD
Câu 4:
Cho hình chữ nhật ABCD có AB = 10cm, BC = 6cm. Trên các cạnh AB, AD lần lượt lấy M, N sao cho AM = AN = x.
a) Tính diện tích đa giác MBCDN theo x
Câu 5:
Cho hình vuông ABCD cạnh 12cm. Các điểm M, N lần lượt trên các cạnh AB, AD sao cho AM = DN = x.
a) Tính diện tích tam giác AMN theo x.
b) Tìm x để diện tích tam giác AMN bằng diện tích hình vuông ABCD
Câu 6:
Cho tam giác ABC có đáy BC = 30cm, chiều cao AH = 20cm. Một đường thẳng song song với BC cánh BC là 5cm cắt các cạnh AB, AC lần lượt tại D, E. Tính diện tích tam giác ADE
Câu 7:
Cho tam giác ABC vuông tại A và điểm H di chuyển trên BC. Gọi E, F lần lượt là điểm đối xứng của H qua AB, AC.
a) Chứng minh A, E, F thẳng hàng.
b) Chứng minh BEFC là hình thang. Có thể tìm được vị trí của H để BEFC là hình bình hành, hình chữ nhật không?
c) Xác định vị trí của H để tam giác EHF có diện tích lớn nhất
về câu hỏi!