Câu hỏi:

27/12/2020 1,094

Cho xOy^ có Om là tia phân giác, COm(CO). Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB.

Chứng minh:

a) OAC=OBC

b) OAC^=OBC^  ;  CA=CB

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét OACOBCcó:

Cạnh OC chung

OA = OB

COA^=COB^ (vì OC là phân giác góc O)

Vậy OAC=OBC (c.g.c)

b) Theo a, ta có: AC = BC ( 2 cạnh tương ứng)

                          OAC^=OBC^ (2 góc tương ứng)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét ABDAED có:

 Cạnh AD chung

AB = AE ( gt)

BAD^=EAD^ (vì AD là tia phân giác góc A)

vậy: ABD=AED ( c.g.c)

b) Theo a, ta có: BAD^=EAD^ (2 góc tương ứng)

suy ra: DA là phân giác của góc D.

Trong tam giác ABC có: AC > AB nên ABC^>ACB^ ( mối liên hệ giữa cạnh và góc đối diện)

Lời giải

a) ABD=EBD(c.g.c)

b) DA=DE ( 2 cạnh tương ứng)

c) A^=E^ ( cặp góc tương ứng)

d) Do câu c) nếu có EDB^=ECD^ thì suy ra: EBD^=ECD^=ABC^2B^=2C^

B^+C^=900 nên B^=600

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP