Cho các biểu thức: A = ; B = + – với x > 0; x ≠ 9
a, Tính A khi x =
b, Rút gọn B
c, Cho P = B : A. Tìm x để P < 3
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
a,
b,
c, Ta có:
Vậy với 0 < x < 9 thì P < 3
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Xét tứ giác BEFC có:
∠BEC = (CE là đường cao)
∠BFC = (BF là đường cao)
=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEFC là tứ giác nội tiếp
Xét tứ giác AEHF có:
∠AEH = (CE là đường cao)
∠AFH = (BF là đường cao)
=> ∠AEH + ∠AFH =
=> Tứ giác AEHF là tứ giác nội tiếp
b,
Xét ΔSBE và ΔSFC có:
∠FSC là góc chung
∠SEB = ∠SCF (Tứ giác BEFC là tứ giác nội tiếp)
=> ΔSBE ∼ ΔSFC (g.g)
=> =
=> SE.SF = SB.SC (1)
Xét ΔSMC và ΔSNB có:
∠ NSC là góc chung
∠ SCM = ∠SNB (Hai góc nội tiếp cùng chắn cung MB)
=> ΔSMC ∼ ΔSBN (g.g)
=> =
=>SM.SN = SB.SC (2)
Từ (1) và (2) => SE.SF = SM.SN
c, Ta có:
(2 góc nội tiếp cùng chắn cung KB)
(tứ giác AEHF là tứ giác nội tiếp)
(tứ giác BEFC là tứ giác nội tiếp)
=> ∠KAE = ∠HAE
=> AE là tia phân giác của góc ∠KAH
Mà AE cũng là đường cao của tam giác KAH
=> ΔKAH cân tại A
=> AE là đường trung tuyến của ΔKAH
=> E là trung điểm của KH hay K và H đối xứng nhau qua AB
d, Tia BF cắt đường tròn (O) tại J
∠KJB = ∠KCB (2 góc nội tiếp cùng chắn cung KB)
∠KCB = ∠EFH (tứ giác BEFC là tứ giác nội tiếp )
=> ∠KJB = ∠EFH
Mà 2 góc này ở vị trí so le trong
=> KJ // EF
KI // EF (gt)
=> I ≡ J
=> H, F, J thẳng hàng
Lời giải
Ta có:
Vì a, b, c > 0 nên
Tương tự, ta có:
Dấu bằng xảy ra khi a = b = c
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.