Câu hỏi:
12/07/2024 880Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Một đội thợ mỏ phải khai thác 216 tấn than trong một thời gian nhất định. Ba ngày đầu, mỗi đội khai thác theo đúng định mức. Sau đó, mỗi ngày họ đều khai thác vượt mức 8 tấn. Do đó họ đã khai thác được 232 tấn và xong trước thời hạn 1 ngày. Hỏi theo kế hoạch, mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi số tấn than mỗi ngày đội thợ phải khai thác theo kế hoạch là x (tấn) (x >0)
=> Thời gian dự định làm là (ngày)
Số tấn than 3 ngày đầu khai thác được là: 3x ( tấn)
Sau 3 ngày đầu, mỗi ngày khai thác vượt mức 8 tấn. Do đó sau ba ngày đầu, số tấn than đội khai thác được mỗi ngày là: x + 8 (tấn)
Họ khai thác được 232 tấn nên thời gian khai thác thực tế là:
+3
Do thời gian xong trước 1 ngày nên ta có phương trình
Do x > 0 nên x = 24
Vậy theo kế hoạch, mỗi ngày đội phải khai thác 24 tấn than
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) (với AB < AC). BE và CF là 2 đường cao của tam giác cắt nhau tại H
a, Chứng minh tứ giác BEFC và AEHF là tứ giác nội tiếp
b, Đường thẳng EF cắt đường thẳng BC tại S và EF cắt đường tròn (O) tại M và N (M nằm giữa S và E). Chứng minh SM. SN = SE. SF
c, Tia CE cắt đường tròn (O) tại K, vẽ dây KI song song với EF. Chứng minh H, K đối xứng nhau qua AB
d, Chứng minh 3 điểm H, F, I thẳng hàng
Câu 3:
Cho các biểu thức: A = ; B = + – với x > 0; x ≠ 9
a, Tính A khi x =
b, Rút gọn B
c, Cho P = B : A. Tìm x để P < 3
Câu 4:
1, Giải hệ phương trình sau:
2, Cho phương trình: (1)
a, Chứng minh phương trình (1) luôn có nghiệm với mọi m
b, Gọi x1,x2 là hai nghiệm của phương trình (1). Tìm m để x1, x2 thỏa mãn: x1(1 – x2) + x2(1 – x1 ) < 4
về câu hỏi!