Câu hỏi:
12/07/2024 1,2181. Cho hệ phương trình:
a, Giải hệ phương trình khi m = 3
b, Tìm m để hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn
2. Cho parabol (P): và đường thẳng y = –2ax – 4a (với là tham số)
a, Tìm tọa độ giao điểm của (d) và (P) khi a = –1
b, Tìm tất cả các giá trị của a để đường thẳng (d) cắt (P) tại hai điểm phân biệt có hoành độ x1; x2 thỏa mãn |x1| + |x2| = 3
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
1.a, Khi m = 3, ta có hệ phương trình
Vậy nghiệm của hệ phương trình là:
b, Ta có hệ phương trình:
Hệ phương trình có nghiệm duy nhất khi và chỉ khi phương trình (*) có nghiện duy nhất
Với m ≠ 0, m ≠ 2 thì phương trinh (1) có nghiệm duy nhất
Ta có:
Với
Vậy hệ phương trình có nghiệm duy nhất
Theo đề bài, ta có:
Kết hợp với điều kiện m ≠ 0, m ≠ 2 => m = 1
Vậy m = 1
2.a, Khi a = –1; đường thẳng (d): y = 2x + 4
Phương trình hoành độ giao điểm của (P) và (d) là:
Phương trình có 2 nghiệm phân biệt:
Vậy toạ độ giao điểm của (P) và (d) khi a = –1 là:
b, Phương trình hoành độ giao điểm của (P) và (d) là:
Đường thẳng (d) cắt (P) tại hai điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt
Vậy với a < 0 hoặc a > 4 thì phương trình (1) có hai nghiệm phân biệt x1, x2.
Áp dụng định lí Vi- et ta có:
Theo bài ra:
Với a < 0, (1) trở thành:
Do a < 0 nên a = –1/2
Với a > 4, phương trình (1) trở thành:
<=> a = ±3/2
Do a > 4 nên không có a thỏa mãn
Vậy với a = –1/2 thì thỏa mãn yêu cầu đề bài
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi: 20 phút = 1/3 giờ.
Gọi vận tốc riêng của cano là x (km/h) (x > 3)
Vận tốc của cano khi xuôi dòng là x + 3 (km/h)
Thời gian khi cano xuôi dòng là: (h)
Vận tốc cano khi ngược dòng là x – 3 (km/h)
Thời gian khi cano ngược dòng là: (h)
Do thời gian xuôi ít hơn thời gian ngược là 20 phút nên ta có phương trình
Do x > 0 nên x = 27
Vậy vận tốc riêng của cano là 27 km/h
Lời giải
a, Ta có:
b,
c, Xét tam giác ABC có:
BE và CF là các đường cao
BE giao với CF tại H
=> H là trực tâm tam giác ABC
=>AH ⊥ BC hay ∠ADC = ∠ADB =
Xét tứ giác BEFC có:
∠BFC = ∠BEC =
=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau
=> BEFC là tứ giác nội tiếp
=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)
Xét tứ giác BFHD có:
∠BFH = ∠HDB =
=>∠BFH + ∠HDB =
=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng )
=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)
Từ (1) và (2) = > ∠HFE = ∠DFH
=> FH tia phân giác của góc ∠DFE
d, Tam giác OFB cân tại O => ∠OFB = ∠FBO
Tam giác BFC vuông tại F => ∠FBO + ∠HCD =
=> ∠OFB + ∠HCD = (*)
ΔFIH cân tại I =>
(đối đỉnh)
ΔHDC vuông tại D =>
=> (**)
Từ (*) và (**) => ∠OFB = ∠IFH
=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) =
Vậy FI là tiếp tuyến của (O)
Chứng minh tương tự EI là tiếp tuyến của (O)
Mà I là trung điểm của AH
=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.