Cho các số a, b, c thỏa mãn điều kiện 0 < a < b và phương trình vô nghiệm. Chứng minh rằng:
> 3
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
Vì phương trình vô nghiệm nên
<=> <=> c > => c > 0 (vì 0 < a < b)
> 3 <=> a + b + c > 3b – 3a (Do 0 < a < b)
<=> 4a – 2b + c > 0
<=> 4ac – 2bc + > 0 (Vì c > 0)
<=> – 2bc + + 4ac – > 0
<=>
Bất đẳng thức trên luôn đúng
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đổi: 20 phút = 1/3 giờ.
Gọi vận tốc riêng của cano là x (km/h) (x > 3)
Vận tốc của cano khi xuôi dòng là x + 3 (km/h)
Thời gian khi cano xuôi dòng là: (h)
Vận tốc cano khi ngược dòng là x – 3 (km/h)
Thời gian khi cano ngược dòng là: (h)
Do thời gian xuôi ít hơn thời gian ngược là 20 phút nên ta có phương trình
Do x > 0 nên x = 27
Vậy vận tốc riêng của cano là 27 km/h
Lời giải
a, Ta có:
b,
c, Xét tam giác ABC có:
BE và CF là các đường cao
BE giao với CF tại H
=> H là trực tâm tam giác ABC
=>AH ⊥ BC hay ∠ADC = ∠ADB =
Xét tứ giác BEFC có:
∠BFC = ∠BEC =
=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau
=> BEFC là tứ giác nội tiếp
=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)
Xét tứ giác BFHD có:
∠BFH = ∠HDB =
=>∠BFH + ∠HDB =
=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng )
=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)
Từ (1) và (2) = > ∠HFE = ∠DFH
=> FH tia phân giác của góc ∠DFE
d, Tam giác OFB cân tại O => ∠OFB = ∠FBO
Tam giác BFC vuông tại F => ∠FBO + ∠HCD =
=> ∠OFB + ∠HCD = (*)
ΔFIH cân tại I =>
(đối đỉnh)
ΔHDC vuông tại D =>
=> (**)
Từ (*) và (**) => ∠OFB = ∠IFH
=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) =
Vậy FI là tiếp tuyến của (O)
Chứng minh tương tự EI là tiếp tuyến của (O)
Mà I là trung điểm của AH
=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.