Câu hỏi:

12/07/2024 7,909

Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H

a, Chứng minh tứ giác AEHF nội tiếp

b, Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4 cm

c, AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFE

d, Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, Ta có:

b, 

c, Xét tam giác ABC có:

BE và CF là các đường cao

BE giao với CF tại H

=> H là trực tâm tam giác ABC

=>AH ⊥ BC hay ∠ADC = ∠ADB = 900

Xét tứ giác BEFC có:

∠BFC = ∠BEC = 900

=> 2 đỉnh E, F cùng nhìn cạnh BC dưới 1 góc bằng nhau

=> BEFC là tứ giác nội tiếp

=> ∠HFE = ∠BEC ( 2 góc nội tiếp cùng chắn cung EC) (1)

Xét tứ giác BFHD có:

∠BFH = ∠HDB = 900

=>∠BFH + ∠HDB = 1800

=> Tứ giác BFHD là tứ giác nội tiếp ( tổng 2 góc đối bằng 1800)

=> ∠DFH = ∠BEC ( 2 góc nội tiếp cùng chắn cung HD) (2)

Từ (1) và (2) = > ∠HFE = ∠DFH

=> FH tia phân giác của góc ∠DFE

d, Tam giác OFB cân tại O => ∠OFB = ∠FBO

Tam giác BFC vuông tại F => ∠FBO + ∠HCD = 900

=> ∠OFB + ∠HCD = 900 (*)

ΔFIH cân tại I => IFH^=IHF^

IHF^=DHC^ (đối đỉnh)

ΔHDC vuông tại D => DHC^+HDC^=900

=> IFH^+HDC^=900 (**)

Từ (*) và (**) => ∠OFB = ∠IFH

=> ∠OFB + ∠OFH = ∠IFH + ∠OFH <=> ∠BFC = ∠FIO <=> ∠FIO) = 900

Vậy FI là tiếp tuyến của (O)

Chứng minh tương tự EI là tiếp tuyến của (O)

Mà I là trung điểm của AH

=> Tiếp tuyến của (O) tại E và F và AH đồng quy tại 1 điểm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi: 20 phút = 1/3 giờ.

Gọi vận tốc riêng của cano là x (km/h) (x > 3)

Vận tốc của cano khi xuôi dòng là x + 3 (km/h)

Thời gian khi cano xuôi dòng là: 40x+3 (h)

Vận tốc cano khi ngược dòng là x – 3 (km/h)

Thời gian khi cano ngược dòng là: 40x-3 (h)

Do thời gian xuôi ít hơn thời gian ngược là 20 phút nên ta có phương trình

Do x > 0 nên x = 27

Vậy vận tốc riêng của cano là 27 km/h

Lời giải

1.a, Khi m = 3, ta có hệ phương trình

Vậy nghiệm của hệ phương trình là: 

b, Ta có hệ phương trình:

Hệ phương trình có nghiệm duy nhất khi và chỉ khi phương trình (*) có nghiện duy nhất

Với m ≠ 0, m ≠ 2 thì phương trinh (1) có nghiệm duy nhất

Ta có:

 

Với  

Vậy hệ phương trình có nghiệm duy nhất 

Theo đề bài, ta có: 

Kết hợp với điều kiện m ≠ 0, m ≠ 2 => m = 1

Vậy m = 1

2.a, Khi a = –1; đường thẳng (d): y = 2x + 4

Phương trình hoành độ giao điểm của (P) và (d) là:

Phương trình có 2 nghiệm phân biệt:

 

 

Vậy toạ độ giao điểm của (P) và (d) khi a = –1 là:

b, Phương trình hoành độ giao điểm của (P) và (d) là:

Đường thẳng (d) cắt (P) tại hai điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt

Vậy với a < 0 hoặc a > 4 thì phương trình (1) có hai nghiệm phân biệt x1, x2.

Áp dụng định lí Vi- et ta có:

Theo bài ra:

Với a < 0, (1) trở thành:

Do a < 0 nên a = –1/2

Với a > 4, phương trình (1) trở thành:

<=> a = ±3/2

Do a > 4 nên không có a thỏa mãn

Vậy với a = –1/2 thì thỏa mãn yêu cầu đề bài

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay