Câu hỏi:

13/07/2024 5,297

Giải các phương trình và hệ phương trình sau:

a, 2x2 – 3x – 5 = 0

b, x4 – 5x2 + 4 = 0

c, 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, 2x2 – 3x – 5 = 0

Δ = 32 – 4 . 2.( –5) = 49 > 0

Phương trình có 2 nghiệm phân biệt:

Vậy tập nghiệm của phương trình trên là S = {–1;5/2}

b, x4 – 5x2 + 4 = 0

Đặt t = x2 (t ≥ 0), khi đó phương trình trở thành:

t2 – 5t + 4 = 0

Phương trình có dạng a + b +c = 1+ (–5) + 4 = 0 nên phương trình có 2 nghiệm t1 = 1; t2 = 4

Với t1 = 1 thì x2 = 1 ⇔ x = ± 1

Với t1 = 4 thì x2 = 4 ⇔ x = ± 2

Vậy phương trình đã cho có tập nghiệm là S = {1; –1; 2; –2 }

c,  ĐKXĐ: x ≠ ±y

Đặt hệ phương trình trở thành:

Khi đó:

Vậy hệ phương trình đã cho có nghiệm (x; y) = 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, Ta có: ∠ABO = 90o(Do BA là tiếp tuyến của (O)) nên B thuộc đường tròn đường kính OA

Tương tự ∠ACO = 90onên C thuộc đường tròn đường kính OA

Do I là trung điểm của MN nên OI ⊥ MN

=> ∠AIO = 90o => I thuộc đường tròn đường kính OA

Vậy 5 điểm O, A , B, C, I cùng thuộc đường tròn đường kính OA

b, Xét ΔABM và ΔANB có:

∠BAN là góc chung

∠ABM = ∠ANB (2 góc cùng chắn ⏜BM)

=> ΔABM ∼ ΔANB

=> ABANAMAB => AM.AN = AB2

Xét tam giác OAB vuông tại O có:

AB2 = OA2 – OB2 = (3R)2 – R2 = 8R2

c, Gọi độ dài AM là x

=> AN = x + R3

Theo câu b ta có:

AM.AN = 8R2

=> x(x + R3) = 8R2 ⇔ x2 + xR3 – 8R2 = 0

Δ = (R3)2 – 4.( –8R2 ) = 35R2 => =R35

Vậy 

=> AM.AN = AB2

d, Ta có:

AB = AC (tính chất 2 tiếp tuyến cắt nhau)

và OB = OC

=> OA là đường trung trực của BC

Do đó OA ⊥ BC tại H

Xét ΔOHK và Δ OIA có:

∠AOK là góc chung

∠OHK = ∠OIA = 90o

=> ΔOHK ∼ ΔOIA

Mặt khác, xét tam giác ABO vuông tại B có BH là đường cao

=> OH.OA = OB2 = R2 (2)

Từ (1) và (2) => OK.OI = R2 = OM2

=> OMOKOIOM

Xét tam giác OIM và tam giác OMK có:

∠MOK là góc chung

OMOKOIOM

=> ΔOIM ∼ ΔOMK (c.g.c)

=> ∠OIM = ∠OMK = 90o Hay OM ⊥ MK

Vậy MK là tiếp tuyến của (O)

Chứng minh tương tự ta được NK là tiếp tuyến của (O).

Lời giải

a, Khi m =1, (d): y = 4x + 1

(P): y = x2

Bảng giá trị:

Đồ thị (P) là đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng, nhận O(0;0) là đỉnh và là điểm thấp nhất.

Vẽ đường thẳng (d): y = 4x + 1

Bảng giá trị

b, Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2(m + 1)x + 2m – 1

⇔ x2 – 2(m + 1)x – (2m – 1) = 0 (*)

Δ' = (m + 1)2 + (2m – 1)

= m2 + 2m + 1 + 2m – 1 = m2 + 4m

* Để đường thẳng d cắt (P) tại hai điểm phân biệt khi và chỉ khi phương trình có 2 nghiệm phân biệt hay Δ’ > 0

* Với m < –4 hoặc m > 0 thì phương trình (*) có 2 nghiệm phân biệt. Theo định lí Vi-et ta có:

Theo giả thiết ta có:

Kết hợp điều kiện, với m = –11/2 thỏa mãn điều kiện đầu bài

 

Câu 4

Tính độ dài cung 600 của đường tròn có bán kính 3cm

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình x2+2x+m+2=0 có 2 nghiệm phân biệt khi

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay