Cho (P): y = x2 và đường thẳng (d) y = 2(m + 1)x + 2m – 1
a, Khi m = 1, hãy vẽ (P) và (d) trên cùng một hệ trục tọa độ
b, Tìm m để x1, x2 thỏa mãn điều kiện sau:
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
a, Khi m =1, (d): y = 4x + 1
(P): y = x2
Bảng giá trị:
Đồ thị (P) là đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng, nhận O(0;0) là đỉnh và là điểm thấp nhất.
Vẽ đường thẳng (d): y = 4x + 1
Bảng giá trị
b, Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = 2(m + 1)x + 2m – 1
⇔ x2 – 2(m + 1)x – (2m – 1) = 0 (*)
Δ' = (m + 1)2 + (2m – 1)
= m2 + 2m + 1 + 2m – 1 = m2 + 4m
* Để đường thẳng d cắt (P) tại hai điểm phân biệt khi và chỉ khi phương trình có 2 nghiệm phân biệt hay Δ’ > 0
* Với m < –4 hoặc m > 0 thì phương trình (*) có 2 nghiệm phân biệt. Theo định lí Vi-et ta có:
Theo giả thiết ta có:
Kết hợp điều kiện, với m = –11/2 thỏa mãn điều kiện đầu bài
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Ta có: ∠ABO = 90o(Do BA là tiếp tuyến của (O)) nên B thuộc đường tròn đường kính OA
Tương tự ∠ACO = 90onên C thuộc đường tròn đường kính OA
Do I là trung điểm của MN nên OI ⊥ MN
=> ∠AIO = 90o => I thuộc đường tròn đường kính OA
Vậy 5 điểm O, A , B, C, I cùng thuộc đường tròn đường kính OA
b, Xét ΔABM và ΔANB có:
∠BAN là góc chung
∠ABM = ∠ANB (2 góc cùng chắn ⏜BM)
=> ΔABM ∼ ΔANB
=> = => AM.AN = AB2
Xét tam giác OAB vuông tại O có:
AB2 = OA2 – OB2 = (3R)2 – R2 = 8R2
c, Gọi độ dài AM là x
=> AN = x + R
Theo câu b ta có:
AM.AN = 8R2
=> x(x + R) = 8R2 ⇔ x2 + xR – 8R2 = 0
Δ = (R)2 – 4.( –8R2 ) = 35R2 =>
Vậy
=> AM.AN = AB2
d, Ta có:
AB = AC (tính chất 2 tiếp tuyến cắt nhau)
và OB = OC
=> OA là đường trung trực của BC
Do đó OA ⊥ BC tại H
Xét ΔOHK và Δ OIA có:
∠AOK là góc chung
∠OHK = ∠OIA = 90o
=> ΔOHK ∼ ΔOIA
Mặt khác, xét tam giác ABO vuông tại B có BH là đường cao
=> OH.OA = OB2 = R2 (2)
Từ (1) và (2) => OK.OI = R2 = OM2
=> =
Xét tam giác OIM và tam giác OMK có:
∠MOK là góc chung
=
=> ΔOIM ∼ ΔOMK (c.g.c)
=> ∠OIM = ∠OMK = 90o Hay OM ⊥ MK
Vậy MK là tiếp tuyến của (O)
Chứng minh tương tự ta được NK là tiếp tuyến của (O).
Lời giải
a, 2x2 – 3x – 5 = 0
Δ = 32 – 4 . 2.( –5) = 49 > 0
Phương trình có 2 nghiệm phân biệt:
Vậy tập nghiệm của phương trình trên là S = {–1;5/2}
b, x4 – 5x2 + 4 = 0
Đặt t = x2 (t ≥ 0), khi đó phương trình trở thành:
t2 – 5t + 4 = 0
Phương trình có dạng a + b +c = 1+ (–5) + 4 = 0 nên phương trình có 2 nghiệm t1 = 1; t2 = 4
Với t1 = 1 thì x2 = 1 ⇔ x = ± 1
Với t1 = 4 thì x2 = 4 ⇔ x = ± 2
Vậy phương trình đã cho có tập nghiệm là S = {1; –1; 2; –2 }
c, ĐKXĐ: x ≠ ±y
Đặt hệ phương trình trở thành:
Khi đó:
Vậy hệ phương trình đã cho có nghiệm (x; y) =
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.