Câu hỏi:

13/07/2024 3,201

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình :

Sau khi xem bảng báo giá, mẹ của Hương đưa bạn 450 nghìn đồng nhờ bạn ra siêu thị mua một bàn ủi và một bộ lau nhà. Hôm nay đúng đợt khuyến mãi, bàn ủi được giảm 20%, bộ lau nhà được giảm 25% nên bạn Hương chỉ phải trả tổng cộng 350 nghìn đồng. Hỏi giá bán thực tế của bàn ủi và bộ lau nhà là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi giá tiền của bàn ủi khi chưa giảm giá là x ( nghìn đồng) (0 < x < 450)

Gọi giá tiền của bộ lau nhà khi chưa giảm giá là y ( nghìn đồng) (0 < x < 450)

Theo bài ra ta có: x + y = 450 (1)

Giá của bàn ủi khi giảm 20% là x – 20100x = 45x

Giá của bộ lau nhà khi giảm 25% là y – 25100y = 34y

Do bạn Hương chỉ phải trả 350 nghìn đồng nên ta có phương trình:

45x + 34y = 350 (2)

Từ (1) và (2) ta có hệ phương trình:

Vậy giá của bàn ủi khi chưa giảm giá là 250 nghìn đồng

Giá của bộ lau nhà khi chưa giảm giá là 200 nghìn đồng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, Ta có: ∠ABO = 90o(Do BA là tiếp tuyến của (O)) nên B thuộc đường tròn đường kính OA

Tương tự ∠ACO = 90onên C thuộc đường tròn đường kính OA

Do I là trung điểm của MN nên OI ⊥ MN

=> ∠AIO = 90o => I thuộc đường tròn đường kính OA

Vậy 5 điểm O, A , B, C, I cùng thuộc đường tròn đường kính OA

b, Xét ΔABM và ΔANB có:

∠BAN là góc chung

∠ABM = ∠ANB (2 góc cùng chắn ⏜BM)

=> ΔABM ∼ ΔANB

=> ABANAMAB => AM.AN = AB2

Xét tam giác OAB vuông tại O có:

AB2 = OA2 – OB2 = (3R)2 – R2 = 8R2

c, Gọi độ dài AM là x

=> AN = x + R3

Theo câu b ta có:

AM.AN = 8R2

=> x(x + R3) = 8R2 ⇔ x2 + xR3 – 8R2 = 0

Δ = (R3)2 – 4.( –8R2 ) = 35R2 => =R35

Vậy 

=> AM.AN = AB2

d, Ta có:

AB = AC (tính chất 2 tiếp tuyến cắt nhau)

và OB = OC

=> OA là đường trung trực của BC

Do đó OA ⊥ BC tại H

Xét ΔOHK và Δ OIA có:

∠AOK là góc chung

∠OHK = ∠OIA = 90o

=> ΔOHK ∼ ΔOIA

Mặt khác, xét tam giác ABO vuông tại B có BH là đường cao

=> OH.OA = OB2 = R2 (2)

Từ (1) và (2) => OK.OI = R2 = OM2

=> OMOKOIOM

Xét tam giác OIM và tam giác OMK có:

∠MOK là góc chung

OMOKOIOM

=> ΔOIM ∼ ΔOMK (c.g.c)

=> ∠OIM = ∠OMK = 90o Hay OM ⊥ MK

Vậy MK là tiếp tuyến của (O)

Chứng minh tương tự ta được NK là tiếp tuyến của (O).

Lời giải

a, 2x2 – 3x – 5 = 0

Δ = 32 – 4 . 2.( –5) = 49 > 0

Phương trình có 2 nghiệm phân biệt:

Vậy tập nghiệm của phương trình trên là S = {–1;5/2}

b, x4 – 5x2 + 4 = 0

Đặt t = x2 (t ≥ 0), khi đó phương trình trở thành:

t2 – 5t + 4 = 0

Phương trình có dạng a + b +c = 1+ (–5) + 4 = 0 nên phương trình có 2 nghiệm t1 = 1; t2 = 4

Với t1 = 1 thì x2 = 1 ⇔ x = ± 1

Với t1 = 4 thì x2 = 4 ⇔ x = ± 2

Vậy phương trình đã cho có tập nghiệm là S = {1; –1; 2; –2 }

c,  ĐKXĐ: x ≠ ±y

Đặt hệ phương trình trở thành:

Khi đó:

Vậy hệ phương trình đã cho có nghiệm (x; y) = 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP