1. Cho hàm số: y = –2x + 3 có đồ thị (d1) và hàm số y = x – 1 có đồ thị (d2). Xác định hệ số a và b biết đường thẳng (d3) y = ax + b song song với (d2) và cắt (d1) tại điểm nằm trên trục tung
2. Giải hệ phương trình sau:
Câu hỏi trong đề: Bộ Đề thi vào 10 môn Toán có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    1. y = –2x + 3 có đồ thị (d1); hàm số y = x – 1 có đồ thị (d2).
Đường thẳng (d3) y = ax + b song song với (d2) nên a =1
(d3) : y = x + b
Đường thẳng (d1) y = –2x + 3 cắt trục tung tại điểm (0; 3)
(d3) cắt (d1) tại điểm nằm trên trục tung nên (d3) đi qua điểm (0; 3)
=> 3 = 0 + b => b = 3
Vậy phương trình đường thẳng (d3) là y = x + 3
2. 
ĐKXĐ: x + y ≠ 0; 2x + y ≠ 0
Đặt  hệ phương trình trở thành:
Vậy hệ phương trình đã cho có nghiệm (x, y) = (0; 1)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Xét tứ giác BFEC có:
∠BFC = 90o (CF là đường cao)
∠BEC = 90o (BE là đường cao)
=> 2 đỉnh E và F cùng nhìn cạnh BC dưới 2 góc bằng nhau
=> Tứ giác BFEC là tứ giác nội tiếp
Xét tứ giác BFHD có:
∠BFH = 90o (CF là đường cao)
∠BDH = 90o (AD là đường cao)
=> ∠BFH + ∠BDH = 180o
=> Tứ giác BFHD là tứ giác nội tiếp
b, Xét ΔDHC và ΔDBA có:
∠HDC = ∠BDA = 90o
∠DHC = ∠DBA ( cùng bù với góc ∠FHD )
=> ΔDHC ∼ ΔDBA (g.g)
=> =
=> DH.DA = DC.DB
c, Ta có: ∠KDI = 90o (AD là đường cao)
=> D thuộc đường tròn đường kính KI (1)
Tam giác AFH vuông tại F có FK là trung tuyến nên KF = KH
Do đó ΔKFH cân tại K => ∠KFH = ∠KHF
Mà ∠KHF = ∠CHD (đối đỉnh) => ∠KFH = ∠CHD
Tương tự ΔICF cân tại C (do IF = IC) => ∠IFC = ∠ICF
Từ đó: ∠KFI = ∠KFH + ∠IFC = ∠CHD + ∠ICF = 90o (ΔDHC vuông tại D)
=> F thuộc đường tròn đường kính KI (2)
Chứng minh tương tự ∠KEI = 90o nên E thuộc đường tròn đường kính KI (3)
Từ (1), (2), (3): 5 điểm K, F, D, I, E thuộc đường tròn đường kính KI
d, Xét ΔMFB và ΔMCE có:
=> ΔMFB ∼ ΔMCE
=> MF.ME = MB.MC
Chứng minh tương tự: ME. MF = MD. MI
Từ đó: MB.MC = MD. MI
Vậy 
Lời giải
x2 – (2m – 1)x – 2m – 1 = 0 (1)
a, Δ = (2m – 1)2 – 4(–2m – 1)
= 4m2 – 4m + 1 + 8m + 4 = 4m2 + 4m + 1 + 4
= (2m + 1)2 + 4 > 0 ∀m
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m
b, Gọi x1, x2 là 2 nghiệm của phương trình (1)
Theo định lí Vi-ét ta có:
 
 
Thay (*) và (2) ta được:
Vậy với m = 0 hoặc m = –1/2 thì pt (1) có hai nghiệm thỏa mãn yêu cầu của đề bài
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo