Câu hỏi:

13/07/2024 2,602

Cho các số tự nhiên a và b. Chứng minh rằng: Nếu a2+b2 chia hết cho 7 thì a và b chia hết cho 7.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nhận xét : Một số chính phương khi chia cho 7 chỉ có thể dư 0, 1, 2, 4 (thật vậy, xét a lần lượt bằng 7k, 7k±1, 7k±2, 7k±3 thì a2 chia cho 7 thứ tự dư 0, 1, 4, 2).

Ta có a2+b2 chia hết cho 7. Xét các trường hợp của tổng hai số dư : 0 + 0, 0 + 1, 0 + 2, 0 + 4, 1 + 1, 1 + 2, 2 + 2, 1 + 4, 2 + 4, 4 + 4, chỉ có 0 + 0 chia hết cho 7. Vậy a2, b2 chia hết cho 7, do đó a và b chia hết cho 7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP