Câu hỏi:

13/07/2024 1,704

Cho các số nguyên a, b, c. Chứng minh rằng: Nếu a+b+c chia hết cho 6 thì a3+b3+c3 chia hết cho 6

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét hiệu

(a3+b3+c3)(a+b+c)=(a3a)+(b3b)+(c3c).

Mỗi biểu thức trong dấu ngoặc ở vế phải đều chia hết cho 6

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

A gồm 50 số chính phương chẵn, 50 số chính phương lẻ. Mỗi số chính phương chẵn chia hết cho 4 nên tổng của 50 số đó chia hết cho 4. Mỗi số chính phương lẻ chia cho 4 dư 1 nên tổng của 50 số đó chia cho 4 dư 2.

A là số chia cho 4 dư 2, không là số chính phương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP